## Warning: package 'network' was built under R version 4.0.3
## network: Classes for Relational Data
## Version 1.16.1 created on 2020-10-06.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
##                     Mark S. Handcock, University of California -- Los Angeles
##                     David R. Hunter, Penn State University
##                     Martina Morris, University of Washington
##                     Skye Bender-deMoll, University of Washington
##  For citation information, type citation("network").
##  Type help("network-package") to get started.
## 
## Attaching package: 'network'
## The following objects are masked from 'package:igraph':
## 
##     %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,
##     get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,
##     is.directed, list.edge.attributes, list.vertex.attributes,
##     set.edge.attribute, set.vertex.attribute
## The following object is masked from 'package:plyr':
## 
##     is.discrete
## Loading required package: BiocFileCache
## Loading required package: dbplyr
## Warning: package 'dbplyr' was built under R version 4.0.5
## 
## Attaching package: 'dbplyr'
## The following objects are masked from 'package:dplyr':
## 
##     ident, sql
## 
## Attaching package: 'AnnotationHub'
## The following object is masked from 'package:Biobase':
## 
##     cache
## 
## Attaching package: 'enrichplot'
## The following object is masked from 'package:GGally':
## 
##     ggtable
## The following object is masked from 'package:ggpubr':
## 
##     color_palette
## The following object is masked from 'package:lattice':
## 
##     dotplot
key<- read.csv("../data_filtered/data_key_Parsed_ReplicatesRemoved.csv")
behav<- read.csv("../data_unfiltered/PIPFIL_T_and_behav_data.csv")
rownames(key)<- key$X

key$Color_ID<- sub("/","", key$Color_ID)
key<- plyr::rename(key, replace=c("Color_ID"="colorID"))
behav$status<- plyr::revalue(behav$status, c("floa"="floater", "terr"="territorial"))
key_behav<- merge(key, behav, by="colorID")
key_behav<- key_behav[!is.na(key_behav$last_behav),]


#create a data.frame with all of the observations. 
not_in_behav<- key[!key$X %in% key_behav$X,]
cols_not_key<- colnames(key_behav)[!colnames(key_behav) %in% colnames(key)]
cols_not_key_df<- data.frame(matrix(NA, nrow = nrow(not_in_behav), ncol = length(cols_not_key)))
colnames(cols_not_key_df)<- cols_not_key
not_in_behav<- cbind(not_in_behav, cols_not_key_df)

key_behav<- rbind(key_behav, not_in_behav)

rownames(key_behav)<- key_behav$X
key_behav<- subset(key_behav, select=c("sampleID", "Year", "Tissue", "Batch", "Status", "Class", "mean_T", "strength.all_study"))
#key_behav$Class<- word(key_behav$Class,1)

key_behav$Tissue<- factor(key_behav$Tissue, levels=c("GON","PIT","VMH","AH","PVN","POM","ICO","GCT","AI","TNA","LS", "BSTm"))
key_behav<- key_behav[order(rownames(key_behav)),]
key_behav$Class<- plyr::revalue(key_behav$Class, replace=c("SCB floater"="Predefinitive floater", "DCB floater "="Definitive floater", "DCB territorial"="Territorial"))
key_behav$Class<- factor(key_behav$Class, levels=c("Predefinitive floater", "Definitive floater", "Territorial"))
rownames(key_behav)<- key_behav$sampleID
key_behav<- key_behav[order(key_behav$sampleID),]


#read the raw count data
data<- read.csv("../data_filtered/data_RawCounts_all_ReplicatesRemoved_antisense_V2.csv")

rownames(data)<- data$X
data$X<- NULL

genes_key<- read.csv("../GO_annotations/Maggies_annotations_modifiedR.csv")
genes_key<- plyr::rename(genes_key, replace=c("GeneID"="gene"))

data_genes<- data.frame(gene=rownames(data))
genes_key<- merge(data_genes, genes_key, by="gene", all.x=TRUE)

genes_key$display_gene_ID<- ifelse(is.na(genes_key$best_anno), as.character(genes_key$gene), ifelse(genes_key$best_anno!=genes_key$gene, paste0(genes_key$gene,"/", genes_key$best_anno), as.character(genes_key$best_anno))) 
  
  

                                

go_terms<- read.csv("../GO_annotations/pfil_GO_key_raw.csv")
go_terms<- plyr::rename(go_terms, replace=c("GeneID"="gene"))
go2gene_bp<- go_terms[which(go_terms$Aspect=="P"),c("GO_ID", "gene")]
go2gene_mf<- go_terms[which(go_terms$Aspect=="F"),c("GO_ID", "gene")]
go_obo<- read.csv("../GO_annotations/ontology_obo_out.csv")
go_obo<- plyr::rename(go_obo, replace=c("id"="GO_ID"))
go2name_bp<- go_obo[which(go_obo$namespace=="biological_process"),c("GO_ID", "name")]
go2name_mf<- go_obo[which(go_obo$namespace=="molecular_function"),c("GO_ID", "name")]



1 Gonads (GON)

Like the DESeq2 document, the Gonads section will contain the code used throughout the the analysis to achieve the full set of results. First, each dataset is filtered conservatively as per the DESeq2 workflow, and then any batch effects identified in the DEseq workflow are removed here. Then we create a midweight bicorrelation weighted signed network using the recommended options. The Topological Overlap Matrix is also signed.


1.1 Data quality control

tissue<- "GON"
gon_key<- subset(key_behav, Tissue==tissue)
gon_key<- droplevels(gon_key)

gon_data<- data[,colnames(data) %in% rownames(gon_key)]


start<- nrow(gon_data)
#remove genes with less than 5 reads
gon_data$avg_count<- apply(gon_data, 1, mean)
gon_data<- gon_data[gon_data$avg_count>5,]
gon_data$avg_count<-NULL
#gon_data$mad<- apply(gon_data,1,mad)
#gon_data$var<- apply(gon_data, 1, var) # could filter by variance rather than MAD maybe <0.2 but these filtering methods all seem to achieve this. 

#remove genes where >50% of samples have 0 gene expression
gon_data$percent_0<- apply(gon_data, 1, function(x)length(x[x==0]))
thresh<- ncol(gon_data)/2
gon_data<- gon_data[gon_data$percent_0<=thresh,]
gon_data$percent_0<-NULL
nrow(gon_data)
## [1] 16169
dd<- DESeqDataSetFromMatrix(countData=gon_data, colData=gon_key, design= ~ Batch)
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
dd<- DESeq(dd)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 175 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
dd<- dd[which(mcols(dd)$betaConv),]
vsd_data<- getVarianceStabilizedData(dd)
mat<- limma::removeBatchEffect(vsd_data, gon_key$Batch)
datExpr0<- as.data.frame(t(mat))
gsg = goodSamplesGenes(datExpr0, verbose = 3)
##  Flagging genes and samples with too many missing values...
##   ..step 1
gsg$allOK
## [1] TRUE
#write.csv(datExpr0, file="GON_vsd_batch_rm.csv")


1.2 Soft-threshold selection

powers<- c(seq(1, 11, by = 1), seq(12, 26, by = 2))


sft<- pickSoftThreshold(datExpr0, powerVector=powers, verbose=0, networkType="signed")
##    Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1      1   0.0406 16.20          0.920  8090.0   8090.00   8330
## 2      2   0.0284 -3.75          0.684  4440.0   4410.00   4990
## 3      3   0.3020 -5.40          0.739  2610.0   2570.00   3360
## 4      4   0.6060 -4.84          0.877  1630.0   1580.00   2450
## 5      5   0.7690 -4.13          0.946  1070.0   1020.00   1870
## 6      6   0.8240 -3.56          0.972   726.0    675.00   1490
## 7      7   0.8620 -3.20          0.987   511.0    462.00   1230
## 8      8   0.8840 -2.95          0.994   370.0    324.00   1030
## 9      9   0.8980 -2.75          0.996   275.0    232.00    880
## 10    10   0.9070 -2.60          0.995   209.0    169.00    762
## 11    11   0.9090 -2.49          0.992   162.0    125.00    668
## 12    12   0.9090 -2.40          0.987   128.0     93.40    591
## 13    14   0.9020 -2.26          0.977    82.9     54.60    474
## 14    16   0.8920 -2.16          0.967    56.6     33.10    389
## 15    18   0.8740 -2.07          0.949    40.3     20.80    325
## 16    20   0.8780 -1.97          0.946    29.7     13.50    276
## 17    22   0.8660 -1.90          0.933    22.5      8.97    237
## 18    24   0.8510 -1.84          0.913    17.4      6.12    206
## 19    26   0.8540 -1.76          0.909    13.8      4.28    181

The soft power selected will be the first power that that reaches scale free topology.


1.3 Adjacency Matrix

The adjacency matrix was run on an HPC to speed up run time and prevent overloading my personal computer.

softPower=10

datExpr0<- read.csv("GON_vsd_batch_rm.csv")
rownames(datExpr0)<- datExpr0$X
datExpr0$X<- NULL

adjacency<- adjacency(datExpr0, power = softPower, type="signed")
TOM<- TOMsimilarity(adjacency, TOMtype="signed")
#dissTOM<- 1-TOM

save(adjacency, dissTOM, file="GON_network.RData")


1.4 Identify co-expression modules

load("../WGCNA_results/within_tissues/GON_network.RData")
dissTOM<- 1-TOM
geneTree= flashClust(as.dist(dissTOM), method="average")

#plot(geneTree, xlab="", sub="", main= "Gene Clustering on TOM-based dissimilarity", labels= FALSE, hang=0.04)
minModuleSize<-30 
dynamicMods<-cutreeDynamic(dendro= geneTree, distM= dissTOM, deepSplit=2, pamRespectsDendro= FALSE, minClusterSize= minModuleSize)
#table(dynamicMods)
dynamicColors= labels2colors(dynamicMods)


plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut", dendroLabels= FALSE, hang=0.03, addGuide= TRUE, guideHang= 0.05, main= "Gene dendrogram and module colors")

#-----Merge modules whose expression profiles are very similar
MEList= moduleEigengenes(datExpr0, colors= dynamicColors)
MEs= MEList$eigengenes
#Calculate dissimilarity of module eigenegenes
MEDiss= 1-cor(MEs)
#Cluster module eigengenes
METree= flashClust(as.dist(MEDiss), method= "average")

##  mergeCloseModules: Merging modules whose distance is less than 0.3
##    multiSetMEs: Calculating module MEs.
##      Working on set 1 ...
##      moduleEigengenes: Calculating 17 module eigengenes in given set.
##    multiSetMEs: Calculating module MEs.
##      Working on set 1 ...
##      moduleEigengenes: Calculating 11 module eigengenes in given set.
##    multiSetMEs: Calculating module MEs.
##      Working on set 1 ...
##      moduleEigengenes: Calculating 10 module eigengenes in given set.
##    Calculating new MEs...
##    multiSetMEs: Calculating module MEs.
##      Working on set 1 ...
##      moduleEigengenes: Calculating 10 module eigengenes in given set.
plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors), c("Dynamic Tree Cut", "Merged dynamic"), dendroLabels= FALSE, hang=0.03, addGuide= TRUE, guideHang=0.05)

moduleColors= mergedColors
colorOrder= c("grey", standardColors(50))
moduleLabels= match(moduleColors, colorOrder)-1
MEs=mergedMEs


1.5 Module-trait correlation

datTraits<- gon_key
all.equal(rownames(datExpr0), rownames(datTraits))


datTraits$sampleID<- as.numeric(as.factor(datTraits$sampleID))
datTraits$Status2<- as.numeric(ifelse(datTraits$Status=="territorial",1,0))


datTraits<- subset(datTraits, select=c("sampleID",  "Status2", "mean_T", "strength.all_study"))
names(datTraits)[names(datTraits)=="Status2"] <- "Status"
names(datTraits)[names(datTraits)=="sampleID"] <- "Individual"


#-----Define numbers of genes and samples
nGenes = ncol(datExpr0);
nSamples = nrow(datExpr0);
#-----Recalculate MEs with color labels
MEs0 = moduleEigengenes(datExpr0, moduleColors)$eigengenes
MEs = orderMEs(MEs0)

#-----Correlations of genes with eigengenes
moduleGeneCor=cor(MEs,datExpr0)
moduleGenePvalue = corPvalueStudent(moduleGeneCor, nSamples);

moduleTraitCor = cor(MEs, datTraits, use = "p");
moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples);


wgcnasum<- as.data.frame(moduleTraitPvalue)

wgcnasum<-  data.frame(Tissue=tissue, 
                                    Individual=nrow(wgcnasum[wgcnasum$Individual<0.05,]),
                                Status=nrow(wgcnasum[wgcnasum$Status<0.05,]),
                                    mean_T=nrow(wgcnasum[wgcnasum$mean_T<0.05,]), strength=nrow(wgcnasum[wgcnasum$strength.all_study<0.05,]), 
                       status_meanT=nrow(wgcnasum[which(wgcnasum$Status<0.05 & wgcnasum$mean_T<0.05),]),
                       meanT_strength=nrow(wgcnasum[which(wgcnasum$mean_T<0.05 & wgcnasum$strength.all_study<0.05),]),
                       status_strength=nrow(wgcnasum[which(wgcnasum$Status<0.05 & wgcnasum$strength.all_study<0.05),]),
                       total_modules=ncol(MEs))

wgcna_summary<- list()
wgcna_summary[[tissue]]<- wgcnasum
#---------------------Module-trait heatmap


textMatrix = paste(signif(moduleTraitCor, 2), "\n(",
                   signif(moduleTraitPvalue, 1), ")", sep = "");
dim(textMatrix) = dim(moduleTraitCor)
par(mar = c(6, 8.5, 3, 3));
# Display the correlation values within a heatmap plot
labeledHeatmap(Matrix = moduleTraitCor,
               xLabels = names(datTraits),
               yLabels = names(MEs),
               ySymbols = names(MEs),
               colorLabels = FALSE,
               colors = blueWhiteRed(50),
               textMatrix = textMatrix,
               setStdMargins = FALSE,
               cex.text = 0.5,
               zlim = c(-1,1),
               main = paste("Module-trait relationships in", tissue))

Genes per module in GON
moduleColors Freq
black 1361
blue 2584
brown 2686
cyan 140
green 1431
grey60 215
midnightblue 1393
pink 590
salmon 243
turquoise 5526


1.6 Module Membership and Gene Significance

#### module membership

datME<- moduleEigengenes(datExpr0,mergedColors)$eigengenes
datKME<- signedKME(datExpr0, datME, outputColumnName="MM.") #use the "signed eigennode connectivity" or module membership

MMPvalue <- as.data.frame(corPvalueStudent(as.matrix(datKME), nSamples)) # Calculate module membership P-values
datKME$gene<- rownames(datKME)
MMPvalue$gene<- rownames(MMPvalue)
genes=names(datExpr0)
geneInfo0 <- data.frame(gene=genes,moduleColor=moduleColors)
geneInfo0 <-  merge(geneInfo0, genes_key, by="gene", all.x=TRUE)
color<- merge(geneInfo0, datKME, by="gene") #these are from your original WGCNA analysis 
#head(color)
write.csv(as.data.frame(color), file = paste("../WGCNA_results/within_tissues/",tissue,"results_ModuleMembership.csv", sep=""), row.names = FALSE)
MMPvalue<- merge(geneInfo0, MMPvalue, by="gene")
write.csv(MMPvalue, file=paste("../WGCNA_results/within_tissues/",tissue,"_results_ModuleMembership_P-value.csv", sep=""), row.names = FALSE)

#### gene-significance
trait = as.data.frame(datTraits$Status) #change here for traits of interest
names(trait) = "status" #change here for traits of interest 
modNames = substring(names(MEs), 3)
geneTraitSignificance = as.data.frame(cor(datExpr0, trait, use = "p"))
GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))
names(geneTraitSignificance) = paste("GS.", names(trait), sep="")
names(GSPvalue) = paste("p.GS.", names(trait), sep="")
GS<- cbind(geneTraitSignificance,GSPvalue)

trait = as.data.frame(datTraits$mean_T)
names(trait)= "mean_T"
geneTraitSignificance = as.data.frame(cor(datExpr0, trait, use = "p"))
GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))
names(geneTraitSignificance) = paste("GS.", names(trait), sep="")
names(GSPvalue) = paste("p.GS.", names(trait), sep="")
GS2<- cbind(geneTraitSignificance,GSPvalue)


trait = as.data.frame(datTraits$strength.all_study)
names(trait)= "strength"
geneTraitSignificance = as.data.frame(cor(datExpr0, trait, use = "p"))
GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))
names(geneTraitSignificance) = paste("GS.", names(trait), sep="")
names(GSPvalue) = paste("p.GS.", names(trait), sep="")
GS3<- cbind(geneTraitSignificance,GSPvalue)

GS$gene<- rownames(GS)
GS<- cbind(GS,GS2, GS3)
GS<- merge(geneInfo0,GS, by="gene")


write.csv(GS, file=paste("../WGCNA_results/within_tissues/",tissue, "_results_GeneSignificance.csv", sep=""), row.names = FALSE)


1.7 Intermodule correlations

# Specify colors
colz<- gsub("ME","",colnames(MEs))
names(colz)<- colnames(MEs)
ann_colors = list(module=colz)

annotation_col<- data.frame(row.names=colnames(MEs), module=colnames(MEs))


correlation<- cor(MEs)
pheatmap(correlation, annotation_col = annotation_col, annotation_colors = ann_colors, annotation_legend=FALSE, legend_breaks = c(-1,-0.5,0,0.5, 1,1), 
main=paste("module eigengene correlations in", tissue, sep=" "), legend_labels = c("-1", "-0.5", "0", "0.5","1","correlation\n\n"))


1.8 Interesting modules


1.8.1 Pink module - mean testosterone

Here I extract the genes associated with a given module and explore them further. This module is potentially associated with mean testosterone. The WGCNA manual says that a good association will show a relationship between the module membership scores of each gene and the gene-significance for that gene.

whichModule="pink"

modcol=paste("MM.",whichModule,sep="")
module_genes<- color[color$moduleColor==whichModule,]


verboseScatterplot(abs(module_genes[, modcol]),
abs(GS[GS$moduleColor==whichModule, "GS.mean_T"]),
xlab = paste("Module Membership in", whichModule, "module"),
ylab = "Gene significance for mean Testosterone",
main = paste("Module membership vs. gene significance\n"),
cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = whichModule)

1.8.1.1 Top 30 hub genes

Next, I am going to explore the top 30 hub genes based on highest module membership

nTop<-30 
#extract the expression of the top 30 genes and sort them based on module membership. 
sorted=color$gene[order(color[,modcol],decreasing=T)]
hubs=sorted[1:nTop]
hubs=datExpr0[,match(hubs, colnames(datExpr0))]



### Sort individual data based on the trait value
expDesign<- data.frame(row.names=rownames(gon_key), mean_T=gon_key[,"mean_T"], Status=gon_key[,"Status"])
expDesign<- expDesign[order(expDesign$mean_T),]
ann_cols<- list(Status=c(territorial="#414042",floater="#E54849"))
hubs<- hubs[match(rownames(expDesign), rownames(hubs)), ]

#plot heatmap
pheatmap(hubs,scale="column", cluster_rows = FALSE,cluster_cols = FALSE,show_rownames = TRUE, show_colnames = TRUE,border_color=NA,  main=paste(whichModule,"module in",tissue), annotation_row=expDesign, annotation_colors=ann_cols)


Now, let’s plot the top gene in this module to see its relationship with mean testosterone

gone<- plotCounts(dd, gene="CHRNA3", intgroup=c("mean_T", "Class"), returnData=TRUE)
ggplot(gone, aes(x=mean_T, y=count)) + geom_point(size=2) + labs(title="CHRNA3 in GON",x="mean T", y="Normalised Counts") + peri_theme
## Warning: Removed 4 rows containing missing values
## (`geom_point()`).

##### TOM BASED NETWORK ####
## get names of genes from the module


probes <- names(datExpr0)
inModule <- moduleColors==whichModule #creates logical vector of whether that gene is in the module
modProbes <- probes[inModule]


# Select the corresponding Topological Overlap
modTOM <- TOM[inModule, inModule] #TOM object does not have any gene names so need to use the positional information from the logical vector.

dimnames(modTOM) <- list(modProbes, modProbes)

IMConn<- softConnectivity(datExpr0[, modProbes], power = softPower, type="signed")
names(IMConn)<- modProbes
IMConn<- sort(IMConn, decreasing=T) #rank by highest connectivity
nTop<-30
top<- IMConn[1:nTop] #Take the top genes 
top30TOM<- modTOM[names(top),names(top)] 
#rename the TOM columns and rows to reflect the locno + gene ID. 
top_genes<- module_genes[module_genes$gene %in% names(top),]
top_genes<- top_genes[match(names(top), top_genes$gene), ]
colnames(top30TOM)<- top_genes$display_gene_ID
rownames(top30TOM)<- top_genes$display_gene_ID
vis = exportNetworkToVisANT(top30TOM,
weighted = TRUE,
threshold = 0.00)
#take the top 25% of TOM connections
vis<- vis[vis$weight>summary(vis$weight)[5],]
CoExpGraph <- graph.data.frame(vis, directed=FALSE)
nDegree <- degree(CoExpGraph, v=V(CoExpGraph), mode=c("total"))
V(CoExpGraph)$degree <- nDegree
ggplot(ggnetwork(CoExpGraph, layout=with_fr()), aes(x = x, y = y, xend = xend, yend = yend))+geom_edges(aes(color=weight))+geom_nodes(aes(x,y, size=degree),color="black", alpha=0.7) +scale_color_gradient(low="#ffd71f", high="#e50000")+theme_blank()+ geom_nodetext_repel(aes(label=name))

1.8.1.2 Gene Ontology

BP enriched GO terms in pink module in GON
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0001525 angiogenesis 25/490 205/12555 0.0000004 0.0006380 0.0005905 ACVR1/ANXA2/APOLD1/ARHGAP22/CCN2/EGF/ENG/FGF1/FOXC1/HSPG2/ID1/JUN/LOC113990968/LOC114000824/LOC114001403/LOC114001849/MAPK14/MMP2/NRCAM/PLXND1/PROK2/ROBO4/SCG2/TGFBI/THY1 25
GO:0001975 response to amphetamine 8/490 24/12555 0.0000022 0.0016401 0.0015179 ASIC3/DBH/PPP1R9B/RGS10/RGS2/RGS4/SLC18A2/TH 8
GO:0007268 chemical synaptic transmission 22/490 188/12555 0.0000041 0.0020970 0.0019408 AKAP5/CACNA1E/CHRNA3/CPLX1/CRH/DBH/FGF12/GAD2/HTR1E/HTR4/LOC113983406/LOC113990721/NPY/PLP1/PMP22/SLC18A2/SLC6A2/SNCA/SNCG/SV2B/SYN2/SYT1 22
GO:0044267 cellular protein metabolic process 20/490 165/12555 0.0000066 0.0025184 0.0023308 ADORA2B/ANO8/B2M/CHGB/CTSH/FURIN/HSPG2/LAMB2/LGALS1/LOC113986369/LOC114003910/LYZ/MMP2/SCG2/SCG3/SFTPB/SFTPC/SNCA/SNCAIP/TGFBI 20
GO:0009749 response to glucose 10/490 51/12555 0.0000226 0.0068942 0.0063809 ACVR1C/ADIPOQ/CCN2/FKBP1B/GJA1/LOC113992227/LPL/SARM1/SREBF1/TXNIP 10
GO:0010628 positive regulation of gene expression 27/490 310/12555 0.0000826 0.0189665 0.0175543 CCN2/CITED2/CRH/CTSH/EGF/FGF1/GATA5/GJA1/ID1/IL34/LOC113992691/LOC114001703/LRRC32/MAPK14/MYC/NOS1AP/NR5A1/OSR1/OSR2/PDE2A/PLP1/SLC26A9/SLC6A4/STAR/STAT3/TWIST1/ZNF804A 27
GO:0051412 response to corticosterone 5/490 13/12555 0.0000880 0.0189665 0.0175543 CRH/LOC113992757/NEFL/STAR/TH 5
GO:0009617 response to bacterium 9/490 49/12555 0.0000996 0.0189665 0.0175543 ADIPOQ/CCDC80/CLPS/DGKB/FKBP5/LOC114003559/LPL/RGS1/VIL1 9
GO:0050679 positive regulation of epithelial cell proliferation 9/490 55/12555 0.0002504 0.0399249 0.0369522 ATP7A/DLX5/FGF1/ID1/MYC/NR4A3/OSR1/OSR2/TWIST1 9
GO:0010977 negative regulation of neuron projection development 9/490 56/12555 0.0002882 0.0399249 0.0369522 B2M/INPP5J/LGALS1/LOC114000824/NR2F1/PRAG1/RTN4RL2/STMN2/VIM 9

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used



2 Pituitary (PIT)

The code for this tissue is mostly above, but each section the R environment is cleared to only keep the base data.

keep<- c("data", "peri_theme", "key","key_behav","dodge","genes_key", "keep", "go2gene_mf","go2name_mf","go2gene_bp","go2name_bp", "wgcna_summary")
rm(list= ls()[!(ls() %in% keep)])
## [1] 14812
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 101 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
##  Flagging genes and samples with too many missing values...
##   ..step 1
## [1] TRUE
##    Power SFT.R.sq  slope truncated.R.sq mean.k. median.k. max.k.
## 1      1 0.003630 -4.320          0.856  7410.0    7420.0   7640
## 2      2 0.000786  0.449          0.935  4240.0    4230.0   4720
## 3      3 0.002610 -0.375          0.918  2650.0    2640.0   3310
## 4      4 0.027300 -0.758          0.906  1780.0    1750.0   2490
## 5      5 0.091300 -1.030          0.896  1250.0    1220.0   1960
## 6      6 0.181000 -1.180          0.892   911.0     881.0   1600
## 7      7 0.279000 -1.310          0.890   687.0     654.0   1340
## 8      8 0.375000 -1.420          0.892   531.0     498.0   1140
## 9      9 0.455000 -1.490          0.896   419.0     386.0    985
## 10    10 0.517000 -1.580          0.894   337.0     304.0    863
## 11    11 0.578000 -1.620          0.908   275.0     243.0    764
## 12    12 0.619000 -1.670          0.911   228.0     196.0    681
## 13    14 0.675000 -1.750          0.914   161.0     133.0    554
## 14    16 0.707000 -1.810          0.913   118.0      92.7    460
## 15    18 0.712000 -1.890          0.903    89.3      66.3    389
## 16    20 0.732000 -1.920          0.912    69.1      48.5    334
## 17    22 0.751000 -1.930          0.922    54.6      36.4    290
## 18    24 0.757000 -1.970          0.925    43.8      27.8    254
## 19    26 0.775000 -1.970          0.934    35.7      21.5    224

The soft-power selected for PIT is 18.

Genes per module in PIT
moduleColors Freq
bisque4 1328
blue 1594
blue2 156
brown4 208
coral1 2779
coral2 382
coral3 59
darkgreen 397
darkgrey 883
darkolivegreen2 589
darkolivegreen4 253
darkorange2 126
darkslateblue 936
darkviolet 72
firebrick3 1601
floralwhite 295
honeydew 61
lightcyan1 133
lightgreen 1798
orangered3 84
palevioletred2 66
pink4 265
plum1 140
plum2 176
sienna4 56
violet 375


2.1 Interesting Modules

2.1.1 floralwhite module - strength

This module is associated with social network strength.

##  softConnectivity: FYI: connecitivty of genes with less than 4 valid samples will be returned as NA.
##  ..calculating connectivities..

This module is too influenced by PFT3. This is a sample I removed in the DESeq2 analysis. Disregard.


2.1.2 pink4 module - strength

This module is also associated with social network strength

2.1.2.1 Gene Ontology

BP enriched GO terms in pink4 module in PIT
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0007288 sperm axoneme assembly 4/214 20/12079 0.0003714 0.1318112 0.1312432 ARMC2/CFAP206/SPEF2/TTLL1 4
GO:0031647 regulation of protein stability 7/214 76/12079 0.0003854 0.1318112 0.1312432 APTX/ATF7IP/DPM2/LOC113993664/MOSMO/PINX1/QRSL1 7
GO:0006362 transcription elongation from RNA polymerase I promoter 3/214 23/12079 0.0074766 0.6320762 0.6293525 CCNH/ERCC3/TAF1A 3
GO:0050821 protein stabilization 8/214 162/12079 0.0082095 0.6320762 0.6293525 ATF7IP/CCNH/CCT6A/GAPDH/GTPBP4/MFSD1/NCLN/TBL1XR1 8
GO:0006363 termination of RNA polymerase I transcription 3/214 24/12079 0.0084346 0.6320762 0.6293525 CCNH/ERCC3/TAF1A 3
GO:0006890 retrograde vesicle-mediated transport, Golgi to endoplasmic reticulum 5/214 73/12079 0.0094384 0.6320762 0.6293525 ARFGAP2/COPB1/KIFAP3/PITPNB/RINT1 5
GO:0006361 transcription initiation from RNA polymerase I promoter 3/214 25/12079 0.0094614 0.6320762 0.6293525 CCNH/ERCC3/TAF1A 3
GO:0006310 DNA recombination 4/214 51/12079 0.0125004 0.6320762 0.6293525 ACTR8/KIN/LOC113982971/SUPV3L1 4
GO:0000226 microtubule cytoskeleton organization 6/214 109/12079 0.0128965 0.6320762 0.6293525 GAPDH/KNSTRN/MARK3/PRKCZ/TTLL1/TUBA8 6
GO:0070085 glycosylation 2/214 11/12079 0.0154662 0.6320762 0.6293525 B4GALT4/LOC113992792 2

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

3 Ventromedial Hypothalamus (VMH)

## [1] 15223
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 102 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
##    Power SFT.R.sq  slope truncated.R.sq mean.k. median.k. max.k.
## 1      1 0.008020 12.600          0.986  7610.0   7610.00   7770
## 2      2 0.000212 -0.471          0.940  4210.0   4200.00   4600
## 3      3 0.080100 -3.750          0.890  2500.0   2480.00   3050
## 4      4 0.196000 -3.140          0.903  1580.0   1550.00   2160
## 5      5 0.329000 -2.720          0.928  1040.0   1010.00   1600
## 6      6 0.473000 -2.710          0.949   715.0    686.00   1240
## 7      7 0.567000 -2.620          0.955   506.0    478.00    985
## 8      8 0.632000 -2.530          0.961   368.0    341.00    802
## 9      9 0.685000 -2.440          0.966   274.0    248.00    664
## 10    10 0.716000 -2.400          0.964   208.0    184.00    558
## 11    11 0.747000 -2.330          0.968   160.0    139.00    474
## 12    12 0.772000 -2.290          0.972   126.0    106.00    408
## 13    14 0.800000 -2.300          0.970    80.4     64.00    314
## 14    16 0.821000 -2.300          0.970    53.8     40.30    248
## 15    18 0.831000 -2.290          0.967    37.3     26.20    201
## 16    20 0.840000 -2.270          0.969    26.7     17.50    165
## 17    22 0.851000 -2.250          0.972    19.6     12.00    138
## 18    24 0.855000 -2.240          0.972    14.7      8.42    117
## 19    26 0.859000 -2.230          0.972    11.2      6.03    101

The soft-power selected for VMH is 18.

Genes per module in VMH
moduleColors Freq
antiquewhite4 223
bisque4 103
black 590
blue 2088
blue2 49
brown 2842
brown2 50
brown4 981
coral1 1033
coral2 125
darkgreen 901
darkolivegreen4 51
darkseagreen4 72
darkslateblue 99
darkturquoise 906
darkviolet 47
floralwhite 530
grey 1
honeydew1 620
indianred4 474
lightcoral 53
lightcyan1 253
magenta 512
mediumorchid 65
midnightblue 1746
paleturquoise 292
royalblue 208
skyblue2 63
steelblue 155
thistle 42
thistle3 46


3.1 Interesting Modules

3.1.1 lightcoral module - Status/mean testosterone

The top hub gene was not significantly associated with either mean_T or Status in the DESeq2 analysis.


3.1.1.1 Gene Ontology

BP enriched GO terms in lightcoral module in VMH
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0032094 response to food 2/45 15/12287 0.0013361 0.1789233 0.1543029 BCL10/OPRM1 2
GO:0008154 actin polymerization or depolymerization 2/45 16/12287 0.0015234 0.1789233 0.1543029 CAPG/WASL 2
GO:0001676 long-chain fatty acid metabolic process 2/45 19/12287 0.0021557 0.1789233 0.1543029 ACAD9/ACSL4 2
GO:2000310 regulation of NMDA receptor activity 2/45 31/12287 0.0057008 0.2080429 0.1794156 LOC113983406/OPRM1 2
GO:0002224 toll-like receptor signaling pathway 2/45 33/12287 0.0064432 0.2080429 0.1794156 BCL10/IRAK4 2
GO:0043280 positive regulation of cysteine-type endopeptidase activity involved in apoptotic process 2/45 36/12287 0.0076346 0.2080429 0.1794156 BCL10/GRAMD4 2
GO:0007254 JNK cascade 2/45 39/12287 0.0089175 0.2080429 0.1794156 IRAK4/MAP4K3 2
GO:0016192 vesicle-mediated transport 3/45 130/12287 0.0118818 0.2080429 0.1794156 ARL5B/LOC113995129/LOC113998023 3
GO:0051056 regulation of small GTPase mediated signal transduction 3/45 140/12287 0.0144937 0.2080429 0.1794156 ARHGEF7/LOC113995129/LOC113998023 3
GO:0001843 neural tube closure 2/45 66/12287 0.0242541 0.2080429 0.1794156 BCL10/SEC24B 2
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used



4 Anterior Hypothalamus (AH)

## [1] 14928
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
##    Power SFT.R.sq  slope truncated.R.sq mean.k. median.k. max.k.
## 1      1 0.000105 -2.410          0.986  7460.0    7460.0   7550
## 2      2 0.065400  4.700          0.810  4330.0    4330.0   4730
## 3      3 0.052000  1.330          0.796  2760.0    2760.0   3340
## 4      4 0.003500 -0.203          0.819  1880.0    1880.0   2550
## 5      5 0.077200 -0.705          0.850  1350.0    1340.0   2050
## 6      6 0.196000 -0.959          0.881  1000.0     989.0   1700
## 7      7 0.324000 -1.130          0.906   768.0     749.0   1440
## 8      8 0.429000 -1.250          0.925   603.0     579.0   1240
## 9      9 0.510000 -1.340          0.940   483.0     455.0   1090
## 10    10 0.577000 -1.420          0.945   393.0     364.0    967
## 11    11 0.632000 -1.490          0.953   325.0     295.0    866
## 12    12 0.666000 -1.550          0.954   272.0     241.0    781
## 13    14 0.724000 -1.620          0.965   196.0     166.0    648
## 14    16 0.761000 -1.680          0.970   147.0     118.0    549
## 15    18 0.792000 -1.730          0.976   113.0      85.8    472
## 16    20 0.808000 -1.770          0.977    88.7      63.9    411
## 17    22 0.821000 -1.800          0.978    71.0      48.6    362
## 18    24 0.833000 -1.820          0.982    57.8      37.5    321
## 19    26 0.833000 -1.850          0.979    47.6      29.4    288

The soft-power selected for AH is 18.

Genes per module in AH
moduleColors Freq
antiquewhite2 63
antiquewhite4 2152
bisque4 383
blue2 1283
blue4 141
blueviolet 239
coral3 63
darkmagenta 131
darkolivegreen2 193
darkolivegreen4 147
darkseagreen3 1754
darkslateblue 107
darkviolet 578
firebrick3 417
firebrick4 72
greenyellow 1308
honeydew1 178
indianred3 120
lavenderblush2 64
lightcyan 310
lightpink2 41
lightslateblue 152
magenta4 123
maroon 96
mediumpurple1 56
mediumpurple2 75
navajowhite 104
orangered4 1148
plum 317
plum4 49
royalblue 2177
salmon1 45
skyblue2 86
tan 469
violet 137
yellow3 62
yellow4 86


4.1 Interesting Modules

4.1.1 mediumpurple1 module - Status

4.1.1.1 Gene Ontology

BP enriched GO terms in mediumpurple1 module in AH
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0016082 synaptic vesicle priming 3/48 20/12138 0.0000631 0.0101610 0.0086999 LOC113987015/LOC113991140/LOC113993758 3
GO:0016079 synaptic vesicle exocytosis 3/48 23/12138 0.0000972 0.0101610 0.0086999 LOC113987015/LOC113991140/LOC113993758 3
GO:0007009 plasma membrane organization 3/48 28/12138 0.0001774 0.0123577 0.0105807 LOC113987015/LOC113991140/LOC113993758 3
GO:0006406 mRNA export from nucleus 4/48 96/12138 0.0005477 0.0249930 0.0213992 DDX25/LOC113993656/LOC114004318/NUP160 4
GO:0061025 membrane fusion 3/48 42/12138 0.0005979 0.0249930 0.0213992 LOC113987015/LOC113991140/LOC113993758 3
GO:0038063 collagen-activated tyrosine kinase receptor signaling pathway 2/48 13/12138 0.0011617 0.0346858 0.0296983 LOC113998275/OTOL1 2
GO:0098789 pre-mRNA cleavage required for polyadenylation 2/48 13/12138 0.0011617 0.0346858 0.0296983 LOC113993656/LOC114004318 2
GO:0006388 tRNA splicing, via endonucleolytic cleavage and ligation 2/48 15/12138 0.0015560 0.0406503 0.0348051 LOC113993656/LOC114004318 2
GO:0016254 preassembly of GPI anchor in ER membrane 2/48 16/12138 0.0017738 0.0411915 0.0352685 PIGV/PIGX 2
GO:0006637 acyl-CoA metabolic process 2/48 22/12138 0.0033633 0.0702937 0.0601860 GPAT4/HMGCL 2
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


4.1.2 tan module - Status

Also the inverse module of the mediumpurple1 module based on the intermodule correlation plot

4.1.2.1 Gene Ontology

BP enriched GO terms in tan module in AH
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0070125 mitochondrial translational elongation 10/351 87/12138 0.0001990 0.2147199 0.2128242 CHCHD1/MRPL14/MRPL24/MRPL35/MRPL36/MRPL51/MRPL54/MRPS18C/MRPS22/TSFM 10
GO:0016075 rRNA catabolic process 4/351 14/12138 0.0005467 0.2949453 0.2923413 EXOSC4/EXOSC6/TRIR/XRN1 4
GO:0070126 mitochondrial translational termination 9/351 87/12138 0.0008986 0.3231911 0.3203377 CHCHD1/MRPL14/MRPL24/MRPL35/MRPL36/MRPL51/MRPL54/MRPS18C/MRPS22 9
GO:0055088 lipid homeostasis 5/351 31/12138 0.0017973 0.3598964 0.3567189 ABHD5/CEBPA/DDX3X/LOC114000584/LOC114001595 5
GO:0090503 RNA phosphodiester bond hydrolysis, exonucleolytic 5/351 33/12138 0.0023947 0.3598964 0.3567189 DCP2/EXOSC4/EXOSC6/TRIR/XRN1 5
GO:0009650 UV protection 3/351 10/12138 0.0024730 0.3598964 0.3567189 ERCC4/LOC113992976/XPA 3
GO:0071028 nuclear mRNA surveillance 3/351 10/12138 0.0024730 0.3598964 0.3567189 EXOSC4/EXOSC6/XRN1 3
GO:0030308 negative regulation of cell growth 9/351 104/12138 0.0031382 0.3598964 0.3567189 ADIPOR1/APBB1/BTG1/DDX3X/LOC113996102/LOC113999325/PPP2CA/PSRC1/VGLL4 9
GO:0045930 negative regulation of mitotic cell cycle 4/351 22/12138 0.0033278 0.3598964 0.3567189 BTG1/CDKN1C/FOXC1/LOC113996102 4
GO:0009411 response to UV 5/351 36/12138 0.0035441 0.3598964 0.3567189 ERCC4/ERCC6/LOC113992976/LOC114000584/LOC114001595 5
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used



5 Paraventricular Nucleus (PVN)

## [1] 15153
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 15 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
##    Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1      1   0.0195 19.20          0.743  7580.0    7580.0   7660
## 2      2   0.4010 -9.84          0.711  4300.0    4240.0   4880
## 3      3   0.4960 -3.59          0.645  2660.0    2570.0   3470
## 4      4   0.6420 -2.55          0.757  1760.0    1660.0   2670
## 5      5   0.7320 -2.27          0.844  1220.0    1110.0   2180
## 6      6   0.8040 -2.09          0.901   883.0     776.0   1840
## 7      7   0.8580 -1.99          0.937   658.0     556.0   1580
## 8      8   0.8910 -1.93          0.957   504.0     408.0   1390
## 9      9   0.9080 -1.90          0.964   395.0     306.0   1240
## 10    10   0.9180 -1.87          0.967   315.0     233.0   1110
## 11    11   0.9320 -1.83          0.975   256.0     180.0   1010
## 12    12   0.9330 -1.82          0.974   211.0     141.0    924
## 13    14   0.9330 -1.79          0.969   148.0      89.5    785
## 14    16   0.9400 -1.76          0.974   108.0      59.1    679
## 15    18   0.9440 -1.73          0.976    81.4      40.2    596
## 16    20   0.9390 -1.71          0.972    62.9      28.1    528
## 17    22   0.9390 -1.69          0.974    49.7      20.2    472
## 18    24   0.9340 -1.68          0.971    39.9      14.8    424
## 19    26   0.9240 -1.68          0.964    32.6      11.0    384

The soft-power selected for PVN is 9.

Genes per module in PVN
moduleColors Freq
black 438
blue 5377
darkgreen 383
darkmagenta 75
darkolivegreen 348
darkorange 394
darkred 664
darkturquoise 181
green 555
greenyellow 886
midnightblue 646
paleturquoise 159
saddlebrown 106
sienna3 73
steelblue 106
turquoise 4631
white 129

It doesn’t appear that our interesting module white is associated with any other module of interest.


5.1 Interesting Modules

5.1.1 white module - status

5.1.1.1 Gene Ontology

BP enriched GO terms in white module in PVN
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0006388 tRNA splicing, via endonucleolytic cleavage and ligation 3/104 15/12249 0.0002512 0.1233371 0.1197807 CLP1/CPSF4/RTCB 3
GO:0006270 DNA replication initiation 3/104 28/12249 0.0016693 0.2736082 0.2657187 MCM3/MCM5/ORC1 3
GO:0032922 circadian regulation of gene expression 4/104 70/12249 0.0029266 0.2736082 0.2657187 DRD3/LOC113996216/LOC113999640/USP2 4
GO:0006094 gluconeogenesis 3/104 35/12249 0.0031947 0.2736082 0.2657187 ENO1/MDH1/PGK1 3
GO:0000727 double-strand break repair via break-induced replication 2/104 11/12249 0.0037356 0.2736082 0.2657187 MCM3/MCM5 2
GO:0045598 regulation of fat cell differentiation 2/104 11/12249 0.0037356 0.2736082 0.2657187 LOC113996216/LOC113999640 2
GO:0098609 cell-cell adhesion 5/104 124/12249 0.0040602 0.2736082 0.2657187 ANXA2/FAT2/FBLIM1/LOC113988363/PDLIM1 5
GO:0006953 acute-phase response 2/104 12/12249 0.0044580 0.2736082 0.2657187 AHSG/IL6R 2
GO:0000956 nuclear-transcribed mRNA catabolic process 2/104 13/12249 0.0052395 0.2858411 0.2775989 LOC113987020/XRN2 2
GO:1903146 regulation of autophagy of mitochondrion 2/104 15/12249 0.0069756 0.3425008 0.3326248 ATP13A2/PINK1 2
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used



6 Medial Preoptic Area (POM)

Note that the PFT2 POM sample was removed from this analysis as it was previously found to be an outlier.

## [1] 15315
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 28 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
##    Power SFT.R.sq  slope truncated.R.sq mean.k. median.k. max.k.
## 1      1   0.0199  20.40          0.939 7660.00   7660.00 7760.0
## 2      2   0.4150 -33.70          0.906 4170.00   4160.00 4490.0
## 3      3   0.4780 -16.50          0.936 2420.00   2410.00 2830.0
## 4      4   0.4710  -9.84          0.939 1490.00   1470.00 1900.0
## 5      5   0.4360  -6.51          0.928  951.00    934.00 1340.0
## 6      6   0.4420  -4.83          0.924  632.00    615.00  975.0
## 7      7   0.4810  -4.06          0.930  433.00    418.00  733.0
## 8      8   0.5500  -3.84          0.946  304.00    291.00  573.0
## 9      9   0.6080  -3.71          0.956  219.00    207.00  456.0
## 10    10   0.6650  -3.68          0.966  161.00    151.00  370.0
## 11    11   0.7080  -3.62          0.972  120.00    111.00  304.0
## 12    12   0.7390  -3.53          0.975   91.50     83.60  253.0
## 13    14   0.8040  -3.36          0.986   55.10     48.90  181.0
## 14    16   0.8520  -3.19          0.992   34.80     29.90  134.0
## 15    18   0.8910  -3.01          0.996   22.80     19.00  102.0
## 16    20   0.9160  -2.91          0.997   15.50     12.50   79.4
## 17    22   0.9350  -2.81          0.998   10.80      8.42   63.3
## 18    24   0.9490  -2.73          0.997    7.74      5.83   51.7
## 19    26   0.9530  -2.72          0.997    5.67      4.10   44.3

The soft-power selected for POM is 20.

Genes per module in POM
moduleColors Freq
antiquewhite1 157
bisque4 199
black 316
blue2 769
blue3 48
blue4 164
blueviolet 60
brown 881
brown1 47
brown2 661
chocolate4 144
coral 2067
coral1 155
coral3 185
darkmagenta 233
darkolivegreen1 49
darkolivegreen2 225
darkorange 674
darkorange2 97
darkred 164
darkseagreen1 41
darkseagreen2 55
darkseagreen3 66
darkseagreen4 145
darkslateblue 380
darkturquoise 158
darkviolet 71
deeppink1 47
firebrick2 106
firebrick3 153
firebrick4 74
floralwhite 391
green4 55
honeydew 66
honeydew1 87
indianred4 283
lavenderblush 43
lavenderblush2 66
lightblue3 51
lightcoral 433
lightgreen 177
lightpink1 111
lightpink2 108
lightpink4 88
lightslateblue 62
lightsteelblue 1161
lightsteelblue1 163
magenta3 57
maroon 152
mediumpurple1 62
mediumpurple4 156
moccasin 44
navajowhite 334
navajowhite1 203
orange 251
orangered1 62
pink3 52
pink4 63
plum1 107
powderblue 47
purple 1021
salmon 216
salmon2 69
sienna3 112
skyblue 134
skyblue1 82
skyblue4 109
tan3 45


6.1 Interesting Modules

6.1.1 floralwhite module - Status/mean T

6.1.1.1 Gene Ontology

BP enriched GO terms in floralwhite module in POM
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0007186 G protein-coupled receptor signaling pathway 30/309 495/12339 0.0000069 0.0074407 0.0071573 CXCR2/FZD9/GAL/GALR1/GHRH/GNAI2/GNRH1/GPR21/GPR63/GRPR/HRH2/HTR5A/IAPP/JAK2/LHCGR/LOC113982386/LOC113993087/LOC113993299/LOC114002880/MCHR1/OPRL1/PDE3B/PRLH/QRFPR/RGS20/RORB/RXFP3/SST/SSTR2/UTS2B 30
GO:0007218 neuropeptide signaling pathway 10/309 88/12339 0.0000672 0.0362788 0.0348968 GAL/GALR1/GRPR/LOC113993087/MCHR1/OPRL1/QRFPR/RXFP3/SCG5/SSTR2 10
GO:0051560 mitochondrial calcium ion homeostasis 4/309 16/12339 0.0005532 0.1989591 0.1913796 IMMT/MAIP1/MCUB/MICU3 4
GO:0019915 lipid storage 4/309 18/12339 0.0008940 0.2384799 0.2293948 CD36/LDAH/NRIP1/PNPLA2 4
GO:0007611 learning or memory 6/309 50/12339 0.0014771 0.2384799 0.2293948 CHRNA7/CRHBP/FZD9/GRPR/LOC113982386/PAFAH1B1 6
GO:0030518 intracellular steroid hormone receptor signaling pathway 3/309 10/12339 0.0016376 0.2384799 0.2293948 AR/NR3C1/PGR 3
GO:0036444 calcium import into the mitochondrion 3/309 10/12339 0.0016376 0.2384799 0.2293948 MAIP1/MCUB/MICU3 3
GO:0007399 nervous system development 16/309 280/12339 0.0018609 0.2384799 0.2293948 ACTL6B/BPNT1/FGF13/FZD9/GDPD5/GFRA3/GPSM1/LOC113991778/LSAMP/NEURL1B/NRN1/NRN1L/OLFM1/PCSK2/PHF10/PLPPR1 16
GO:0007565 female pregnancy 6/309 53/12339 0.0020045 0.2384799 0.2293948 CORIN/CRHBP/GNRH1/IGFBP2/LOC113982386/PAPPA 6
GO:0090280 positive regulation of calcium ion import 3/309 11/12339 0.0022102 0.2384799 0.2293948 LOC113982386/LOC114000001/STC1 3

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


6.1.2 pink3 module - strength

6.1.2.1 Gene Ontology

BP enriched GO terms in pink3 module in POM
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0036444 calcium import into the mitochondrion 2/41 10/12339 0.0004767 0.0533864 0.0446343 OPA1/SMDT1 2
GO:0015693 magnesium ion transport 2/41 12/12339 0.0006962 0.0533864 0.0446343 NIPAL3/TUSC3 2
GO:1903830 magnesium ion transmembrane transport 2/41 13/12339 0.0008210 0.0533864 0.0446343 NIPAL3/TUSC3 2
GO:0048208 COPII vesicle coating 3/41 60/12339 0.0010217 0.0533864 0.0446343 CD59/CTSC/PDCD6 3
GO:0006094 gluconeogenesis 2/41 36/12339 0.0063185 0.1905773 0.1593344 GOT1/PGAM1 2
GO:0006110 regulation of glycolytic process 2/41 40/12339 0.0077576 0.1905773 0.1593344 NUP35/PGAM1 2
GO:0022900 electron transport chain 2/41 46/12339 0.0101654 0.1905773 0.1593344 LOC114003129/NDUFAF2 2
GO:0006487 protein N-linked glycosylation 2/41 48/12339 0.0110326 0.1905773 0.1593344 DOLPP1/TUSC3 2
GO:0032981 mitochondrial respiratory chain complex I assembly 2/41 49/12339 0.0114780 0.1905773 0.1593344 NDUFAF2/NDUFB1 2
GO:0036297 interstrand cross-link repair 2/41 50/12339 0.0119313 0.1905773 0.1593344 FANCE/NEIL3 2
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


6.1.3 mediumpurple1 - mean testosterone

6.1.3.1 Gene Ontology

BP enriched GO terms in mediumpurple1 module in POM
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0007084 mitotic nuclear envelope reassembly 2/41 10/12339 0.0004767 0.0517006 0.0420245 LMNA/PPP2R2A 2
GO:0033622 integrin activation 2/41 10/12339 0.0004767 0.0517006 0.0420245 LOC113991759/TLN1 2
GO:0036498 IRE1-mediated unfolded protein response 3/41 50/12339 0.0005988 0.0517006 0.0420245 LMNA/LOC113991759/TLN1 3
GO:0031398 positive regulation of protein ubiquitination 3/41 66/12339 0.0013476 0.0723435 0.0588039 AXIN1/LOC113992269/TRAF6 3
GO:0032147 activation of protein kinase activity 3/41 67/12339 0.0014075 0.0723435 0.0588039 AXIN1/LOC113985569/TRAF6 3
GO:2000060 positive regulation of ubiquitin-dependent protein catabolic process 2/41 19/12339 0.0017773 0.0723435 0.0588039 AXIN1/LOC113992269 2
GO:0006936 muscle contraction 3/41 81/12339 0.0024275 0.0723435 0.0588039 LOC113991759/PXN/TLN1 3
GO:0007160 cell-matrix adhesion 3/41 82/12339 0.0025139 0.0723435 0.0588039 ADAMTS13/PXN/SNED1 3
GO:0007229 integrin-mediated signaling pathway 3/41 82/12339 0.0025139 0.0723435 0.0588039 ADAMTS13/LOC113991759/TLN1 3
GO:0030866 cortical actin cytoskeleton organization 2/41 31/12339 0.0047128 0.1220611 0.0992165 LOC113991759/TLN1 2
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


6.1.4 sienna3 - strength

6.1.4.1 Gene Ontology

BP enriched GO terms in sienna3 module in POM
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0030433 ubiquitin-dependent ERAD pathway 4/92 58/12339 0.0009028 0.2416790 0.2368751 DNAJB14/LOC113995895/RNF103/UBE2G2 4
GO:0006891 intra-Golgi vesicle-mediated transport 3/92 28/12339 0.0011481 0.2416790 0.2368751 GABARAPL2/GOSR1/NAPG 3
GO:0006885 regulation of pH 2/92 10/12339 0.0023802 0.2852676 0.2795972 EDNRB/SLC26A4 2
GO:0045600 positive regulation of fat cell differentiation 3/92 41/12339 0.0034838 0.2852676 0.2795972 CREBL2/LOC113993849/SYAP1 3
GO:0031573 intra-S DNA damage checkpoint 2/92 13/12339 0.0040661 0.2852676 0.2795972 ATF2/EME1 2
GO:0006112 energy reserve metabolic process 2/92 15/12339 0.0054208 0.2852676 0.2795972 GNAS/KL 2
GO:0031396 regulation of protein ubiquitination 2/92 15/12339 0.0054208 0.2852676 0.2795972 DCUN1D1/PINK1 2
GO:0033146 regulation of intracellular estrogen receptor signaling pathway 2/92 15/12339 0.0054208 0.2852676 0.2795972 LOC113993849/UFSP2 2
GO:0045071 negative regulation of viral genome replication 2/92 17/12339 0.0069536 0.3252720 0.3188064 BTBD17/EIF2AK2 2
GO:0051443 positive regulation of ubiquitin-protein transferase activity 2/92 18/12339 0.0077850 0.3277496 0.3212347 DCUN1D1/PINK1 2
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used



7 Dorsomedial Intercollicular Nucleus (ICo)

## [1] 15071
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
##    Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1      1   0.0312 25.70          0.970  7540.0    7540.0   7670
## 2      2   0.0490 -4.86          0.903  4250.0    4230.0   4730
## 3      3   0.1430 -3.42          0.860  2600.0    2570.0   3280
## 4      4   0.2250 -2.48          0.856  1700.0    1660.0   2420
## 5      5   0.3260 -2.05          0.880  1160.0    1120.0   1860
## 6      6   0.4310 -1.98          0.902   830.0     788.0   1490
## 7      7   0.5200 -2.00          0.915   610.0     568.0   1230
## 8      8   0.5820 -2.02          0.918   460.0     420.0   1030
## 9      9   0.6320 -2.04          0.923   355.0     317.0    883
## 10    10   0.6730 -2.04          0.931   279.0     243.0    762
## 11    11   0.6950 -2.05          0.932   223.0     189.0    665
## 12    12   0.7230 -2.04          0.939   180.0     149.0    584
## 13    14   0.7460 -2.06          0.940   123.0      95.7    462
## 14    16   0.7750 -2.04          0.949    86.8      63.6    373
## 15    18   0.7800 -2.05          0.947    63.4      43.6    306
## 16    20   0.7980 -2.02          0.952    47.6      30.7    255
## 17    22   0.8110 -1.99          0.956    36.5      22.1    215
## 18    24   0.8190 -1.97          0.956    28.5      16.3    183
## 19    26   0.8340 -1.92          0.960    22.7      12.2    157

The soft-power selected for ICO is 18.

## [1] TRUE
Genes per module in ICO
moduleColors Freq
bisque4 1297
blue2 63
brown2 618
coral1 1201
darkgrey 1339
darkmagenta 490
darkolivegreen4 68
darkorange2 513
darkseagreen3 2480
darkturquoise 363
darkviolet 631
firebrick4 265
greenyellow 521
honeydew 45
honeydew1 85
indianred4 69
lavenderblush2 47
lavenderblush3 86
lightpink3 49
maroon 237
mediumpurple3 116
navajowhite1 54
orangered4 2718
palevioletred3 90
plum3 59
salmon4 92
skyblue 169
thistle 57
thistle1 93
thistle3 57
turquoise 1097

There appears to be no correlations between modules of interest.

7.1 Interesting Modules

7.1.1 lavenderblush2 - strength

7.1.1.1 Gene Ontology

BP enriched GO terms in lavenderblush2 module in ICO
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0089718 amino acid import across plasma membrane 2/37 10/12201 0.0003966 0.0662263 0.0563539 LOC114001992/SLC22A2 2
GO:0007265 Ras protein signal transduction 3/37 65/12201 0.0009853 0.0822706 0.0700065 CDKN1A/JUN/NRAS 3
GO:0042908 xenobiotic transport 2/37 22/12201 0.0019896 0.1075022 0.0914768 LOC114001992/SLC22A2 2
GO:0051591 response to cAMP 2/37 28/12201 0.0032186 0.1075022 0.0914768 JUN/LOC113993849 2
GO:0071479 cellular response to ionizing radiation 2/37 28/12201 0.0032186 0.1075022 0.0914768 CDKN1A/SWI5 2
GO:0000079 regulation of cyclin-dependent protein serine/threonine kinase activity 2/37 43/12201 0.0074726 0.1853735 0.1577398 CDKN1A/CNPPD1 2
GO:0006977 DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest 2/37 47/12201 0.0088778 0.1853735 0.1577398 CDKN1A/LOC113993849 2
GO:0090305 nucleic acid phosphodiester bond hydrolysis 2/37 52/12201 0.0107870 0.1853735 0.1577398 LOC113989190/ZRANB3 2
GO:0006606 protein import into nucleus 2/37 65/12201 0.0165091 0.1853735 0.1577398 CDKN1A/SNUPN 2
GO:0006098 pentose-phosphate shunt 1/37 10/12201 0.0299258 0.1853735 0.1577398 RPIA 1

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


7.1.2 darkturquoise - mean testosterone

7.1.2.1 Gene Ontology

BP enriched GO terms in darkturquoise module in ICO
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0043392 negative regulation of DNA binding 4/289 21/12201 0.0013420 0.6394570 0.6393909 CTNNBIP1/HDAC2/LOC113990539/NFKBIA 4
GO:0034765 regulation of ion transmembrane transport 8/289 93/12201 0.0016049 0.6394570 0.6393909 GPR89B/KCNA6/KCNG3/KCNH8/KCNJ6/KCNJ8/LOC113993165/TMEM37 8
GO:0036499 PERK-mediated unfolded protein response 3/289 11/12201 0.0018845 0.6394570 0.6393909 ATF3/LOC113998959/LOC114003207 3
GO:0007263 nitric oxide mediated signal transduction 3/289 14/12201 0.0039439 0.7171947 0.7171206 CD36/NPY2R/RASD1 3
GO:0030517 negative regulation of axon extension 3/289 14/12201 0.0039439 0.7171947 0.7171206 KIAA0319/RNF6/RTN4R 3
GO:0006370 7-methylguanosine mRNA capping 4/289 31/12201 0.0058603 0.7171947 0.7171206 GTF2F2/LOC113983394/POLR2J/RNGTT 4
GO:0042246 tissue regeneration 3/289 17/12201 0.0069911 0.7171947 0.7171206 GAP43/LOC113998959/LOC114003207 3
GO:0043254 regulation of protein-containing complex assembly 3/289 17/12201 0.0069911 0.7171947 0.7171206 CD36/HJURP/INSM1 3
GO:0032355 response to estradiol 6/289 75/12201 0.0086076 0.7171947 0.7171206 CASP8/DHH/EZH2/HPGD/MBD3/TXNIP 6
GO:0032496 response to lipopolysaccharide 7/289 100/12201 0.0095616 0.7171947 0.7171206 CASP8/CSF2RB/DUSP10/HDAC2/HPGD/KCNJ8/LOC113998857 7
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


7.1.3 maroon - mean testosterone

7.1.3.1 Gene Ontology

BP enriched GO terms in maroon module in ICO
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0006508 proteolysis 17/205 250/12201 0.0000011 0.0008534 0.0007831 ACE/ADAM8/CAPN3/CAPN5/LGMN/LOC113983631/LOC114004136/MASP1/METAP1D/MMP2/MMP28/PAPLN/PM20D1/PRSS23/RHBDF1/TINAG/USP25 17
GO:0060078 regulation of postsynaptic membrane potential 6/205 38/12201 0.0000369 0.0149480 0.0137169 GABRA5/GABRA6/GABRB2/GRIK1/GRIN3A/LOC113990089 6
GO:0060384 innervation 4/205 15/12201 0.0000914 0.0194990 0.0178931 GABRA5/GABRB2/LRIG1/SULF2 4
GO:0030514 negative regulation of BMP signaling pathway 6/205 45/12201 0.0000986 0.0194990 0.0178931 BMPER/CTDSPL2/SFRP2/SKOR2/SOSTDC1/VWC2L 6
GO:0051932 synaptic transmission, GABAergic 4/205 16/12201 0.0001202 0.0194990 0.0178931 GABRA5/GABRA6/GABRB2/LOC113990089 4
GO:0007215 glutamate receptor signaling pathway 4/205 18/12201 0.0001969 0.0236565 0.0217083 GRID2/GRIK1/GRIN2A/PLCB1 4
GO:0030198 extracellular matrix organization 12/205 208/12201 0.0002042 0.0236565 0.0217083 ADAMTS12/BCAN/COL6A1/EGFLAM/LAMA3/LOC113998335/MMP2/MMP28/NDNF/PAPLN/PTX3/VWA1 12
GO:0042472 inner ear morphogenesis 5/205 36/12201 0.0003147 0.0318980 0.0292710 GATA2/NTN1/OTX1/PAX2/SPRY2 5
GO:0090102 cochlea development 4/205 23/12201 0.0005334 0.0475213 0.0436078 GABRA5/GABRB2/GATA2/PAX2 4
GO:0007268 chemical synaptic transmission 11/205 201/12201 0.0005860 0.0475213 0.0436078 CACNB4/DTNA/GABRA5/GABRA6/GABRB2/GRIK1/GRIN2A/GRM4/LOC113990089/NPTX1/NTSR1 11

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used



8 Midbrain Central Grey (GCt)

## [1] 15099
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 11717 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
##    Power SFT.R.sq  slope truncated.R.sq mean.k. median.k. max.k.
## 1      1  0.00530 -12.10          0.974  7550.0    7550.0   7660
## 2      2  0.00467  -1.64          0.886  4270.0    4270.0   4610
## 3      3  0.11400  -3.30          0.881  2630.0    2630.0   3140
## 4      4  0.15500  -2.43          0.877  1730.0    1720.0   2300
## 5      5  0.21600  -2.10          0.884  1190.0    1180.0   1760
## 6      6  0.29000  -1.97          0.894   852.0     837.0   1400
## 7      7  0.36600  -1.90          0.905   630.0     612.0   1140
## 8      8  0.43600  -1.87          0.916   478.0     458.0    947
## 9      9  0.50200  -1.89          0.922   371.0     350.0    802
## 10    10  0.55800  -1.91          0.929   293.0     272.0    688
## 11    11  0.60100  -1.92          0.934   235.0     214.0    597
## 12    12  0.63700  -1.95          0.938   191.0     171.0    524
## 13    14  0.69900  -1.97          0.951   131.0     112.0    412
## 14    16  0.72900  -2.03          0.954    93.7      76.7    336
## 15    18  0.74400  -2.10          0.952    69.0      54.0    281
## 16    20  0.76500  -2.14          0.960    52.1      39.0    238
## 17    22  0.77000  -2.18          0.960    40.3      28.6    204
## 18    24  0.78400  -2.20          0.966    31.7      21.5    177
## 19    26  0.79200  -2.21          0.970    25.3      16.4    154

The soft-power selected for GCT is 18.

Genes per module in GCT
moduleColors Freq
antiquewhite1 34
antiquewhite2 132
antiquewhite4 95
bisque4 2333
black 914
brown2 156
chocolate4 79
coral 113
coral1 179
coral3 360
cyan 1252
darkgreen 194
darkgrey 408
darkolivegreen2 1719
darkolivegreen4 1267
darkseagreen2 40
darkseagreen3 174
deeppink 1490
firebrick3 53
floralwhite 582
green4 40
indianred3 53
lightcoral 83
lightpink2 47
lightpink3 70
mediumpurple1 134
mediumpurple2 155
mediumpurple4 63
navajowhite 1335
orangered3 274
pink4 302
plum 89
plum4 51
saddlebrown 161
salmon2 72
sienna4 60
skyblue2 152
skyblue4 62
tan 230
yellow4 92

There appears to be a strong correlation between skyblue2 and green4, which are associated with strength.


8.1 Interesting Modules

8.1.1 skyblue2 - strength

I’m not convinced. Let’s move on to correlations with stronger p-values


8.1.2 lightpink3 - mean testosterone

8.1.2.1 Gene Ontology

BP enriched GO terms in lightpink3 module in GCT
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0070528 protein kinase C signaling 2/58 10/12240 0.0009691 0.2332786 0.2190439 LOC113994699/PLEK 2
GO:0033540 fatty acid beta-oxidation using acyl-CoA oxidase 2/58 13/12240 0.0016646 0.2332786 0.2190439 EHHADH/HSD17B4 2
GO:0032703 negative regulation of interleukin-2 production 2/58 21/12240 0.0043738 0.2332786 0.2190439 CD34/LOC113986241 2
GO:0043392 negative regulation of DNA binding 2/58 21/12240 0.0043738 0.2332786 0.2190439 JUN/NFKBIA 2
GO:0006958 complement activation, classical pathway 2/58 24/12240 0.0056963 0.2332786 0.2190439 LOC113984271/LOC113986241 2
GO:0034080 CENP-A containing nucleosome assembly 2/58 28/12240 0.0077074 0.2332786 0.2190439 CENPT/HJURP 2
GO:0000082 G1/S transition of mitotic cell cycle 3/58 87/12240 0.0080763 0.2332786 0.2190439 EIF4EBP1/MCM2/PLK2 3
GO:0051591 response to cAMP 2/58 29/12240 0.0082533 0.2332786 0.2190439 DUSP1/JUN 2
GO:0046627 negative regulation of insulin receptor signaling pathway 2/58 33/12240 0.0106042 0.2332786 0.2190439 PRKCQ/SOCS1 2
GO:0045746 negative regulation of Notch signaling pathway 2/58 37/12240 0.0132150 0.2332786 0.2190439 NFKBIA/TCIM 2
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


8.1.3 antiquewhite1 - strength

8.1.3.1 Gene Ontology

BP enriched GO terms in antiquewhite1 module in GCT
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0043044 ATP-dependent chromatin remodeling 2/27 36/12240 0.0028188 0.1458146 0.1121232 MBD3/SMARCA5 2
GO:1990830 cellular response to leukemia inhibitory factor 2/27 77/12240 0.0123845 0.1458146 0.1121232 SMARCA5/SPRY2 2
GO:0006613 cotranslational protein targeting to membrane 1/27 10/12240 0.0218491 0.1458146 0.1121232 SRP14 1
GO:0030518 intracellular steroid hormone receptor signaling pathway 1/27 10/12240 0.0218491 0.1458146 0.1121232 PGR 1
GO:0106074 aminoacyl-tRNA metabolism involved in translational fidelity 1/27 10/12240 0.0218491 0.1458146 0.1121232 DTD1 1
GO:0002031 G protein-coupled receptor internalization 1/27 11/12240 0.0240085 0.1458146 0.1121232 SAG 1
GO:0042474 middle ear morphogenesis 1/27 11/12240 0.0240085 0.1458146 0.1121232 TSHZ1 1
GO:0050678 regulation of epithelial cell proliferation 1/27 11/12240 0.0240085 0.1458146 0.1121232 PGR 1
GO:0070914 UV-damage excision repair 1/27 11/12240 0.0240085 0.1458146 0.1121232 DDB2 1
GO:0098974 postsynaptic actin cytoskeleton organization 1/27 11/12240 0.0240085 0.1458146 0.1121232 LOC113998505 1
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


8.1.4 antiquewhite2 - strength

8.1.4.1 Gene Ontology

BP enriched GO terms in antiquewhite2 module in GCT
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0009566 fertilization 3/95 21/12240 0.0005443 0.1091090 0.1091090 AAAS/LOC114000708/MEIOB 3
GO:0046854 phosphatidylinositol phosphorylation 4/95 50/12240 0.0005968 0.1091090 0.1091090 FAM126A/PIK3C3/PIK3CB/PIK3R6 4
GO:0090305 nucleic acid phosphodiester bond hydrolysis 4/95 54/12240 0.0008003 0.1091090 0.1091090 DCLRE1C/EXD2/LOC114001323/MEIOB 4
GO:0010975 regulation of neuron projection development 3/95 29/12240 0.0014298 0.1461951 0.1461951 IL1RAPL1/LOC113992691/MARK1 3
GO:0019229 regulation of vasoconstriction 2/95 12/12240 0.0037400 0.2549409 0.2549409 ECE1/EDN3 2
GO:0036092 phosphatidylinositol-3-phosphate biosynthetic process 2/95 12/12240 0.0037400 0.2549409 0.2549409 PIK3C3/PIK3CB 2
GO:0002009 morphogenesis of an epithelium 2/95 14/12240 0.0051048 0.2982672 0.2982672 FRAS1/RIPK4 2
GO:0000729 DNA double-strand break processing 2/95 15/12240 0.0058605 0.2996201 0.2996201 EXD2/LOC114001323 2
GO:0048873 homeostasis of number of cells within a tissue 2/95 21/12240 0.0113724 0.3877285 0.3877285 ADD1/LOC114000708 2
GO:0090023 positive regulation of neutrophil chemotaxis 2/95 21/12240 0.0113724 0.3877285 0.3877285 MCU/MOSPD2 2
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


8.1.5 coral1 - strength

8.1.5.1 Gene Ontology

BP enriched GO terms in coral1 module in GCT
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0007275 multicellular organism development 11/149 303/12240 0.0011903 0.5366347 0.5366347 CDH8/DGKD/EPHA5/ERBB4/ERMARD/NELFA/PAQR5/STRBP/TDRD9/VIRMA/WIF1 11
GO:0071392 cellular response to estradiol stimulus 3/149 31/12240 0.0061911 0.5366347 0.5366347 ESR2/NCOA3/NRIP1 3
GO:0030518 intracellular steroid hormone receptor signaling pathway 2/149 10/12240 0.0062129 0.5366347 0.5366347 ESR2/NR3C1 2
GO:2000010 positive regulation of protein localization to cell surface 2/149 11/12240 0.0075332 0.5366347 0.5366347 ERBB4/MAP1A 2
GO:0042472 inner ear morphogenesis 3/149 36/12240 0.0094090 0.5366347 0.5366347 ALDH1A3/GBX2/PRRX1 3
GO:0018105 peptidyl-serine phosphorylation 6/149 148/12240 0.0094306 0.5366347 0.5366347 CAB39/CAMK1D/MAPK14/MAPKAPK5/SGK2/WNK1 6
GO:0032793 positive regulation of CREB transcription factor activity 2/149 14/12240 0.0121698 0.5366347 0.5366347 CAMK1D/EPHA5 2
GO:0002028 regulation of sodium ion transport 2/149 15/12240 0.0139309 0.5366347 0.5366347 LOC113983777/WNK1 2
GO:0050773 regulation of dendrite development 2/149 15/12240 0.0139309 0.5366347 0.5366347 CAMK1D/CSMD3 2
GO:0001755 neural crest cell migration 3/149 45/12240 0.0172755 0.5366347 0.5366347 ERBB4/GBX2/SEMA5B 3
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used



9 Nucleus Taenia (TnA)

## [1] 14696
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 33 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
##    Power SFT.R.sq    slope truncated.R.sq mean.k. median.k. max.k.
## 1      1 9.27e-03 15.90000          0.870 7350.00   7350.00 7430.0
## 2      2 2.09e-03 -2.39000          0.926 4010.00   4000.00 4300.0
## 3      3 4.48e-03  1.51000          0.968 2330.00   2330.00 2730.0
## 4      4 1.51e-02  1.62000          0.973 1440.00   1430.00 1840.0
## 5      5 1.31e-02  1.02000          0.971  922.00    912.00 1310.0
## 6      6 1.39e-02  0.77800          0.973  614.00    604.00  958.0
## 7      7 3.84e-03  0.31700          0.964  422.00    412.00  724.0
## 8      8 4.59e-06  0.00917          0.955  298.00    288.00  564.0
## 9      9 2.28e-02 -0.57300          0.944  215.00    206.00  452.0
## 10    10 9.46e-02 -1.07000          0.938  159.00    150.00  369.0
## 11    11 2.05e-01 -1.44000          0.940  119.00    111.00  306.0
## 12    12 3.35e-01 -1.76000          0.952   90.60     83.60  257.0
## 13    14 5.72e-01 -2.18000          0.978   54.90     49.10  186.0
## 14    16 7.14e-01 -2.41000          0.991   34.80     30.10  140.0
## 15    18 7.92e-01 -2.54000          0.996   22.90     19.10  108.0
## 16    20 8.29e-01 -2.64000          0.993   15.60     12.50   84.7
## 17    22 8.55e-01 -2.68000          0.994   10.90      8.45   67.8
## 18    24 8.75e-01 -2.68000          0.997    7.83      5.83   55.1
## 19    26 8.92e-01 -2.67000          0.998    5.73      4.11   45.4

The soft-power selected for TNA is 18.

Genes per module in TNA
moduleColors Freq
antiquewhite2 53
antiquewhite4 140
black 1096
blue 1787
blue2 470
brown4 106
coral1 1579
coral3 2067
darkgrey 254
darkorange 1383
darkorange2 1848
darkseagreen4 372
grey 5
honeydew 55
lavenderblush3 217
lightsteelblue 612
lightyellow 585
magenta4 59
mediumpurple4 49
navajowhite1 60
orangered3 81
orangered4 954
palevioletred3 95
skyblue1 82
skyblue2 84
skyblue4 44
tan 457
thistle2 99

Based on inspection of the module memberships it seems that coral1 is the inverse of blue and/or lightyellow


9.1 Interesting Modules

9.1.1 coral1 - mean testosterone

9.1.1.1 Gene Ontology

BP enriched GO terms in coral1 module in TNA
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0001755 neural crest cell migration 16/1250 45/11978 0.0000062 0.0122582 0.0122582 ACVR1/ALX1/ARTN/EDN3/EFNB1/LOC113982696/LOC113984504/LOC113988059/RADIL/SEMA3B/SEMA4A/SEMA4B/SEMA4D/SEMA4G/SHH/SOX8 16
GO:0007411 axon guidance 41/1250 208/11978 0.0000432 0.0429695 0.0429695 ARTN/B3GNT2/BMP7/DOK5/DRAXIN/EFNA1/EFNB1/EPHA1/GAB2/GFRA3/GPC1/LGI1/LOC113982696/LOC113983904/LOC113984118/LOC113984504/LOC113988059/LOC113990338/LRTM2/MAPK7/NEO1/NEXN/NPTN/NRP2/NTN4/PALLD/RAP1GAP/SEMA3B/SEMA4A/SEMA4B/SEMA4D/SEMA4G/SHC3/SHH/SIAH1/SLIT2/SRC/TUBB3/UNC5A/VLDLR/VSTM2L 41
GO:0098962 regulation of postsynaptic neurotransmitter receptor activity 8/1250 18/11978 0.0002306 0.1476696 0.1476696 BEGAIN/CACNG4/DLGAP3/LOC113982730/LOC114000047/NPTX1/NPTX2/SRC 8
GO:0050919 negative chemotaxis 12/1250 38/11978 0.0003237 0.1476696 0.1476696 LOC113982696/LOC113984504/LOC113988059/LRTM2/NRP2/PDGFA/SEMA3B/SEMA4A/SEMA4B/SEMA4D/SEMA4G/SLIT2 12
GO:0035195 gene silencing by miRNA 6/1250 11/11978 0.0003710 0.1476696 0.1476696 CNOT6/CNOT8/EIF6/LIMD1/MOV10L1/WTIP 6
GO:0007267 cell-cell signaling 26/1250 130/11978 0.0008199 0.2719451 0.2719451 ADORA2A/ADRA1A/BMP2/CCN5/CX3CL1/DHH/ECE2/EDN3/EFNA1/EFNB1/ESR2/FGF18/FGFBP2/GJA5/GPNMB/GUCA1B/INHBA/LOC113988059/LOC113991921/LOC113992470/LOC113993120/PDGFA/POMC/SEMA3B/SHH/SSTR3 26
GO:0071470 cellular response to osmotic stress 6/1250 13/11978 0.0011461 0.3258145 0.3258145 LOC113991483/LOC113991484/LOC113991485/LOC113991486/LOC114001824/PKD2 6
GO:0009880 embryonic pattern specification 7/1250 18/11978 0.0014951 0.3305788 0.3305788 BMP7/EFNB1/RIPPLY2/SATB2/SHH/SMAD3/ZBTB16 7
GO:0055074 calcium ion homeostasis 7/1250 18/11978 0.0014951 0.3305788 0.3305788 CAMK2N1/CIB2/FAM20A/KL/LOC114004119/SNCA/TNFSF11 7
GO:0051764 actin crosslink formation 5/1250 10/11978 0.0019733 0.3926931 0.3926931 BAIAP2/DPYSL3/GAS2/GAS2L1/MARCKS 5

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


9.1.2 blue - mean testosterone

9.1.2.1 Gene Ontology

BP enriched GO terms in blue module in TNA
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0006120 mitochondrial electron transport, NADH to ubiquinone 17/1486 38/11978 0.0000008 0.0016443 0.0016443 NDUFA1/NDUFA11/NDUFA4/NDUFA4L2/NDUFA5/NDUFAF1/NDUFB11/NDUFB3/NDUFB4/NDUFB5/NDUFB7/NDUFS1/NDUFS4/NDUFS5/NDUFS6/NDUFS8/NDUFV3 17
GO:0032981 mitochondrial respiratory chain complex I assembly 18/1486 49/11978 0.0000113 0.0118183 0.0118183 ACAD9/ECSIT/LOC113987270/NDUFA1/NDUFA11/NDUFA5/NDUFAF1/NDUFB11/NDUFB3/NDUFB4/NDUFB5/NDUFB7/NDUFS1/NDUFS4/NDUFS5/NDUFS6/NDUFS8/NDUFV3 18
GO:0048013 ephrin receptor signaling pathway 25/1486 92/11978 0.0000975 0.0679597 0.0679597 ACTB/ACTR2/ACTR3/ARPC1A/ARPC1B/ARPC2/ARPC5/CDC42/EPHA4/EPHA8/EPHB2/EPHB3/GIT1/HCK/KALRN/LOC113993801/LOC113998953/NCK2/NCSTN/NGEF/RAC1/RHOA/SDC2/SS18/WASL 25
GO:0034314 Arp2/3 complex-mediated actin nucleation 8/1486 15/11978 0.0001580 0.0825658 0.0825658 ACTR2/ACTR3/ARPC1A/ARPC1B/ARPC2/ARPC5/ARPC5L/WHAMM 8
GO:1902600 proton transmembrane transport 21/1486 75/11978 0.0002186 0.0913576 0.0913576 ATP12A/ATP2C1/ATP5MF/ATP6AP1L/ATP6V0B/ATP6V0E1/ATP6V1E1/HVCN1/LOC113983953/LOC113984288/LOC113985114/LOC113985195/LOC113985992/LOC114000835/LOC114003365/NDUFA4/NDUFA4L2/SLC17A5/SLC25A27/SLC2A10/SLC9A1 21
GO:0035970 peptidyl-threonine dephosphorylation 9/1486 20/11978 0.0003162 0.1101596 0.1101596 DUSP4/DUSP5/DUSP6/DUSP7/LOC113997232/PPM1A/PPM1B/PPM1E/PPP2CA 9
GO:0043687 post-translational protein modification 55/1486 285/11978 0.0005068 0.1513247 0.1513247 ANKRD9/APP/ASB1/ASB16/ASB7/BMP4/BTBD6/C3/CCN1/COP1/COPS5/COPS7A/CP/DCAF13/DCAF17/DCUN1D1/ELOC/EVA1A/FBXL5/FBXL7/FBXO22/FBXO32/FBXO9/FUCA2/IGFBP7/KLHL13/KLHL20/KLHL42/LAMC1/LOC113984874/LOC113987294/LOC113992168/LOC113999119/LOC113999601/MIA3/NUB1/PROC/PSMA1/PSMA3/PSMA4/PSMA7/PSMD10/PSMD11/PSME4/RAB2A/RAB5A/RBBP7/SCG2/SDC2/SKP1/SKP2/SOCS3/SPSB4/UBE2F/UBE2M 55
GO:0043401 steroid hormone mediated signaling pathway 8/1486 18/11978 0.0007617 0.1665755 0.1665755 BMP4/GPER1/LEF1/NR2E1/NR4A3/PAQR7/PGRMC2/PPARD 8
GO:0008277 regulation of G protein-coupled receptor signaling pathway 14/1486 45/11978 0.0007642 0.1665755 0.1665755 ADCYAP1/GIT1/HOMER2/LOC114003843/PDCL/RGS11/RGS12/RGS14/RGS16/RGS2/RGS4/RGS5/ZDHHC3/ZDHHC7 14
GO:0002281 macrophage activation involved in immune response 6/1486 11/11978 0.0009564 0.1665755 0.1665755 IFI35/LOC113985745/LOC113986453/LOC113994309/LOC113998967/NMI 6
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


9.1.3 lightyellow - mean testosterone

9.1.3.1 Gene Ontology

BP enriched GO terms in lightyellow module in TNA
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0006695 cholesterol biosynthetic process 10/504 34/11978 0.0000008 0.0011542 0.0011542 FDFT1/HMGCR/HMGCS1/HSD17B7/INSIG1/INSIG2/LOC113987727/LOC114002832/MSMO1/SQLE 10
GO:0016126 sterol biosynthetic process 6/504 13/11978 0.0000072 0.0049447 0.0049447 CH25H/HMGCR/INSIG1/INSIG2/MSMO1/SQLE 6
GO:0045540 regulation of cholesterol biosynthetic process 8/504 33/11978 0.0000509 0.0233422 0.0233422 FDFT1/GPAM/HMGCR/HMGCS1/LOC113987727/LOC114002832/SQLE/SREBF2 8
GO:0071404 cellular response to low-density lipoprotein particle stimulus 5/504 16/11978 0.0003839 0.1321546 0.1321546 CD81/CD9/HMGCS1/PPARG/SREBF2 5
GO:0033189 response to vitamin A 4/504 10/11978 0.0005311 0.1462786 0.1462786 CAT/LOC113999589/LRAT/PPARG 4
GO:0006625 protein targeting to peroxisome 9/504 66/11978 0.0016812 0.3190921 0.3190921 ACOX1/AGPS/CAT/DAO/GSTK1/LOC113996048/NUDT19/PEX26/UBE2D3 9
GO:0019432 triglyceride biosynthetic process 4/504 14/11978 0.0022133 0.3190921 0.3190921 ACSL4/GK/GPAM/LPIN2 4
GO:2000009 negative regulation of protein localization to cell surface 4/504 14/11978 0.0022133 0.3190921 0.3190921 LEPROT/LEPROTL1/PICALM/TAX1BP3 4
GO:0006629 lipid metabolic process 11/504 96/11978 0.0022807 0.3190921 0.3190921 ACOX1/ACSL4/CH25H/CRK/CRKL/HMGCS1/LCAT/LPIN2/PPARG/SREBF2/TTPA 11
GO:0035666 TRIF-dependent toll-like receptor signaling pathway 5/504 23/11978 0.0023173 0.3190921 0.3190921 BIRC2/LOC113996048/TLR6/TRAF3/UBE2D3 5

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used



10 Arcopallium Intermedium (Ai)

## [1] 14598
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 71 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
##    Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1      1   0.0107 25.90          0.978  7300.0   7300.00   7370
## 2      2   0.1290 -8.30          0.891  4070.0   4060.00   4460
## 3      3   0.2070 -4.32          0.909  2460.0   2440.00   3040
## 4      4   0.2960 -3.16          0.936  1580.0   1550.00   2230
## 5      5   0.3840 -2.66          0.952  1070.0   1040.00   1710
## 6      6   0.4630 -2.39          0.961   745.0    716.00   1360
## 7      7   0.5500 -2.26          0.973   538.0    509.00   1110
## 8      8   0.6310 -2.19          0.983   399.0    370.00    929
## 9      9   0.6880 -2.14          0.986   303.0    275.00    788
## 10    10   0.7350 -2.13          0.987   234.0    208.00    677
## 11    11   0.7710 -2.12          0.987   184.0    160.00    588
## 12    12   0.7890 -2.14          0.980   147.0    124.00    516
## 13    14   0.8370 -2.11          0.984    97.2     77.90    406
## 14    16   0.8630 -2.10          0.983    67.1     50.60    327
## 15    18   0.8790 -2.09          0.983    47.9     34.00    270
## 16    20   0.8890 -2.09          0.982    35.2     23.40    227
## 17    22   0.8720 -2.11          0.964    26.5     16.60    193
## 18    24   0.8630 -2.13          0.957    20.4     11.90    166
## 19    26   0.8750 -2.11          0.962    15.9      8.74    145

The soft-power selected for AI is 18.

Genes per module in AI
moduleColors Freq
antiquewhite2 1026
antiquewhite4 720
bisque4 182
blue2 68
brown2 68
brown4 104
coral1 94
coral2 90
coral3 53
darkgreen 1538
darkgrey 341
darkmagenta 1289
darkolivegreen 1686
darkolivegreen4 166
darkslateblue 482
darkviolet 65
grey 2
honeydew 57
honeydew1 309
indianred4 1184
lightcoral 274
lightcyan1 496
lightpink3 57
magenta 2702
magenta4 59
mediumpurple2 75
mediumpurple4 53
orange 629
orangered3 76
palevioletred3 98
plum 193
salmon2 63
skyblue2 86
thistle 64
thistle1 99
yellow3 50

Of our interesting modules, it appears that thistle1 is negatively correlated with skyblue2


10.1 Interesting Modules

10.1.1 thistle1 - mean testosterone

10.1.1.1 Gene Ontology

BP enriched GO terms in thistle1 module in AI
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0006783 heme biosynthetic process 3/84 23/11917 0.0005404 0.1945428 0.1939740 ALAS1/CPOX/SLC25A39 3
GO:0007005 mitochondrion organization 4/84 84/11917 0.0028888 0.3805802 0.3794674 ALAS1/DNAJA3/PYROXD2/SIRT3 4
GO:0045453 bone resorption 2/84 14/11917 0.0042287 0.3805802 0.3794674 ACP5/NCDN 2
GO:1900181 negative regulation of protein localization to nucleus 2/84 14/11917 0.0042287 0.3805802 0.3794674 LZTS2/TRIM29 2
GO:0001921 positive regulation of receptor recycling 2/84 16/11917 0.0055255 0.3924384 0.3912909 ANXA2/LOC113996134 2
GO:0072593 reactive oxygen species metabolic process 2/84 23/11917 0.0112839 0.3924384 0.3912909 LOC113988359/NDUFA13 2
GO:0007131 reciprocal meiotic recombination 2/84 26/11917 0.0142987 0.3924384 0.3912909 KLHDC3/RAD51D 2
GO:0016525 negative regulation of angiogenesis 3/84 74/11917 0.0152921 0.3924384 0.3912909 COL4A3/ISM1/LOC114002556 3
GO:2000134 negative regulation of G1/S transition of mitotic cell cycle 2/84 28/11917 0.0164802 0.3924384 0.3912909 CDKN2C/RBL1 2
GO:0009408 response to heat 2/84 30/11917 0.0187941 0.3924384 0.3912909 DNAJA3/RPS6KB1 2
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


10.1.2 skyblue2 - mean testosterone

10.1.2.1 Gene Ontology

BP enriched GO terms in skyblue2 module in AI
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0098696 regulation of neurotransmitter receptor localization to postsynaptic specialization membrane 2/80 10/11917 0.0019340 0.3458354 0.3407388 ADAM10/PRKCZ 2
GO:0006509 membrane protein ectodomain proteolysis 2/80 19/11917 0.0070672 0.3458354 0.3407388 ADAM10/SPPL2A 2
GO:0001954 positive regulation of cell-matrix adhesion 2/80 20/11917 0.0078185 0.3458354 0.3407388 EPHA1/PRKCZ 2
GO:0097194 execution phase of apoptosis 2/80 20/11917 0.0078185 0.3458354 0.3407388 CFLAR/STK24 2
GO:0001817 regulation of cytokine production 2/80 21/11917 0.0086041 0.3458354 0.3407388 IGF2BP3/LRRC19 2
GO:0005977 glycogen metabolic process 2/80 23/11917 0.0102765 0.3458354 0.3407388 IL6ST/LOC113990070 2
GO:0010803 regulation of tumor necrosis factor-mediated signaling pathway 2/80 23/11917 0.0102765 0.3458354 0.3407388 LOC113989730/SPPL2A 2
GO:0032715 negative regulation of interleukin-6 production 2/80 26/11917 0.0130308 0.3458354 0.3407388 FOXJ1/SOCS5 2
GO:0021510 spinal cord development 2/80 28/11917 0.0150254 0.3458354 0.3407388 PTN/SUZ12 2
GO:0051781 positive regulation of cell division 2/80 31/11917 0.0182459 0.3458354 0.3407388 GAREM1/PTN 2
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


10.1.3 palevioletred3 - mean testosterone

Not very convincing relationship

10.1.3.1 Gene Ontology

BP enriched GO terms in palevioletred3 module in AI
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:2000772 regulation of cellular senescence 2/80 11/11917 0.0023535 0.3208474 0.3203173 RSL1D1/ZMPSTE24 2
GO:2001214 positive regulation of vasculogenesis 2/80 12/11917 0.0028120 0.3208474 0.3203173 ADM/CD34 2
GO:0042632 cholesterol homeostasis 3/80 52/11917 0.0050824 0.3208474 0.3203173 LOC113994745/NPC2/NUS1 3
GO:0031398 positive regulation of protein ubiquitination 3/80 66/11917 0.0098415 0.3208474 0.3203173 BCL10/TBC1D7/UBE2L3 3
GO:0010951 negative regulation of endopeptidase activity 3/80 67/11917 0.0102538 0.3208474 0.3203173 LOC113992168/PROS1/SPOCK3 3
GO:0001889 liver development 3/80 68/11917 0.0106759 0.3208474 0.3203173 FPGS/SRD5A1/ZMPSTE24 3
GO:0008360 regulation of cell shape 4/80 135/11917 0.0128347 0.3208474 0.3203173 CDC42SE2/RHOA/TBCCD1/ZMPSTE24 4
GO:0016239 positive regulation of macroautophagy 2/80 27/11917 0.0140126 0.3208474 0.3203173 SCOC/SESN2 2
GO:0000209 protein polyubiquitination 5/80 220/11917 0.0160870 0.3208474 0.3203173 FBXO11/LOC113996737/SKP1/UBE2L3/UBE2V1 5
GO:0030449 regulation of complement activation 2/80 30/11917 0.0171426 0.3208474 0.3203173 LOC113992168/PROS1 2
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


10.1.4 lightcoral - mean testosterone

Not a convincing relationship.



11 Lateral Septum (Ls)

## [1] 14901
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 56 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
##    Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1      1   0.0556 39.00          0.907  7450.0   7450.00   7570
## 2      2   0.0483 -5.20          0.860  4130.0   4110.00   4480
## 3      3   0.1620 -4.09          0.900  2460.0   2450.00   3000
## 4      4   0.2850 -3.28          0.937  1560.0   1540.00   2160
## 5      5   0.4100 -2.85          0.962  1040.0   1010.00   1640
## 6      6   0.5170 -2.61          0.976   716.0    689.00   1290
## 7      7   0.6110 -2.48          0.985   510.0    483.00   1050
## 8      8   0.6900 -2.40          0.992   373.0    347.00    869
## 9      9   0.7470 -2.33          0.994   280.0    254.00    734
## 10    10   0.7940 -2.31          0.996   214.0    190.00    631
## 11    11   0.8250 -2.29          0.998   167.0    144.00    549
## 12    12   0.8450 -2.28          0.996   132.0    111.00    484
## 13    14   0.8770 -2.25          0.995    85.7     67.70    384
## 14    16   0.9000 -2.21          0.997    58.3     43.10    313
## 15    18   0.9140 -2.17          0.997    41.1     28.30    260
## 16    20   0.9240 -2.13          0.998    29.9     19.10    219
## 17    22   0.9300 -2.10          0.997    22.3     13.20    187
## 18    24   0.9340 -2.07          0.998    17.0      9.34    161
## 19    26   0.9330 -2.04          0.996    13.2      6.71    141

The soft-power selected for LS is 16.

Genes per module in LS
moduleColors Freq
antiquewhite4 78
bisque4 98
black 2039
blue 1386
brown 1569
brown4 1884
coral1 80
coral2 398
darkgrey 256
darkmagenta 352
darkorange 818
darkred 284
floralwhite 466
green 1271
grey 2
lightcoral 50
lightgreen 223
lightsteelblue1 961
maroon 161
navajowhite2 357
orangered4 294
paleturquoise 309
palevioletred3 90
plum 62
skyblue3 200
yellow 1083
yellowgreen 128

There doesn’t appear to be any obviously negative correlations with our modules of interest.

11.1 Interesting Modules

11.1.1 darkmagenta - strength

## Warning: Removed 3 rows containing missing values
## (`geom_point()`).

11.1.1.1 Gene Ontology

BP enriched GO terms in darkmagenta module in LS
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0016032 viral process 21/295 406/12091 0.0009823 0.2529708 0.2436046 AAAS/ANKRD17/ATF7/BRD2/DCAF1/DNAJB12/E4F1/EP300/IL2RB/KAT2A/LOC113985512/LOC113989518/LOC113999689/LOC114003727/MPDZ/NUP214/SETD2/SPEN/SSRP1/TPR/UBR4 21
GO:0043967 histone H4 acetylation 5/295 33/12091 0.0011321 0.2529708 0.2436046 EP300/EP400/LOC113997056/LOC113998036/LOC113998501 5
GO:0046854 phosphatidylinositol phosphorylation 6/295 50/12091 0.0012919 0.2529708 0.2436046 LOC113983741/LOC113988212/LOC113992314/PI4K2A/PIK3R2/SOCS7 6
GO:0045652 regulation of megakaryocyte differentiation 5/295 35/12091 0.0014882 0.2529708 0.2436046 EP300/KMT2A/L3MBTL1/TNRC6B/TNRC6C 5
GO:0035194 post-transcriptional gene silencing by RNA 3/295 10/12091 0.0015190 0.2529708 0.2436046 HELZ/TNRC6B/TNRC6C 3
GO:0051726 regulation of cell cycle 8/295 96/12091 0.0023630 0.2529708 0.2436046 BOP1/CSNK2A2/EP300/HIPK2/L3MBTL1/NUP214/PRDM11/SON 8
GO:0010761 fibroblast migration 3/295 12/12091 0.0026857 0.2529708 0.2436046 ARID5B/LOC113988212/LOC113992314 3
GO:0006110 regulation of glycolytic process 5/295 40/12091 0.0027317 0.2529708 0.2436046 AAAS/EP300/LOC113999689/NUP214/TPR 5
GO:0007595 lactation 5/295 42/12091 0.0033944 0.2529708 0.2436046 CAD/LOC113997056/LOC113998036/MED1/NCOR2 5
GO:0019827 stem cell population maintenance 5/295 42/12091 0.0033944 0.2529708 0.2436046 EIF4ENIF1/LOC113993147/LOC113999502/MED30/RIF1 5

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


11.1.2 black - strength

## Warning: Removed 3 rows containing missing values
## (`geom_point()`).

11.1.2.1 Gene Ontology

BP enriched GO terms in black module in LS
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0007281 germ cell development 10/1654 19/12091 0.0000635 0.1183396 0.1180611 ACVR1/AKT1/ANGPT2/BMP4/CELF4/FBXW11/PAFAH1B1/RPS6KB1/SMAD5/TDRD1 10
GO:0006376 mRNA splice site selection 10/1654 20/12091 0.0001114 0.1183396 0.1180611 CELF2/CELF4/LOC113985802/LOC113985815/LOC114002198/LUC7L/LUC7L3/RBMX/SRSF1/SRSF6 10
GO:0005979 regulation of glycogen biosynthetic process 6/1654 10/12091 0.0008323 0.5895228 0.5881357 AKT1/INPP5K/PPP1CB/PPP1R3C/PPP1R3D/PPP1R3G 6
GO:0035338 long-chain fatty-acyl-CoA biosynthetic process 8/1654 18/12091 0.0014705 0.7811873 0.7793493 ACSL3/ACSL4/ELOVL2/ELOVL4/ELOVL5/ELOVL6/HSD17B12/TECR 8
GO:0032869 cellular response to insulin stimulus 21/1654 84/12091 0.0038217 0.8005247 0.7986411 AKT1/C2CD5/CAPN10/CPEB2/FER/HDAC9/INPP5K/INSIG2/LOC113985802/LOC113985815/LPIN2/PTEN/RAB12/RAB8B/RHOQ/RPS6KB1/SORBS1/STAR/SYAP1/TRARG1/YWHAG 21
GO:0006661 phosphatidylinositol biosynthetic process 19/1654 74/12091 0.0042222 0.8005247 0.7986411 CDIPT/CDS1/DGKE/FIG4/INPP4A/INPP5K/MTMR12/MTMR6/MTMR8/PIK3CA/PIK3R4/PIP4K2A/PIP4K2B/PITPNM3/PLEKHA3/PTEN/RAB4A/RAB5A/SACM1L 19
GO:0016024 CDP-diacylglycerol biosynthetic process 6/1654 13/12091 0.0047103 0.8005247 0.7986411 AGPAT3/AGPAT5/CDS1/LCLAT1/LOC113995899/TAMM41 6
GO:0032482 Rab protein signal transduction 6/1654 13/12091 0.0047103 0.8005247 0.7986411 RAB12/RAB21/RAB33B/RAB39A/RAB4A/RAB9A 6
GO:0045842 positive regulation of mitotic metaphase/anaphase transition 6/1654 13/12091 0.0047103 0.8005247 0.7986411 ANAPC11/ANAPC4/ESPL1/LOC113991003/NSMCE2/RB1 6
GO:0071470 cellular response to osmotic stress 6/1654 13/12091 0.0047103 0.8005247 0.7986411 DDX3X/LOC113991482/LOC113991485/LOC113991486/LRRC8D/ZFAND1 6

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used



12 Bed Nucleus of the Stria Terminalis (BSTm)

## [1] 15033
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 35 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
##    Power SFT.R.sq   slope truncated.R.sq mean.k. median.k. max.k.
## 1      1 8.90e-06   0.819          0.932  7520.0   7520.00   7570
## 2      2 4.60e-01 -19.200          0.919  4140.0   4120.00   4520
## 3      3 4.54e-01  -6.940          0.905  2450.0   2420.00   3000
## 4      4 4.95e-01  -4.130          0.915  1540.0   1500.00   2140
## 5      5 5.62e-01  -3.070          0.935  1010.0    973.00   1590
## 6      6 6.37e-01  -2.750          0.952   689.0    652.00   1250
## 7      7 6.93e-01  -2.670          0.960   486.0    450.00   1010
## 8      8 7.32e-01  -2.640          0.961   351.0    318.00    841
## 9      9 7.65e-01  -2.600          0.965   260.0    230.00    713
## 10    10 7.99e-01  -2.540          0.977   197.0    169.00    613
## 11    11 8.14e-01  -2.520          0.977   152.0    126.00    535
## 12    12 8.28e-01  -2.510          0.977   119.0     95.20    471
## 13    14 8.51e-01  -2.460          0.980    75.6     56.50    375
## 14    16 8.78e-01  -2.390          0.987    50.4     34.80    306
## 15    18 8.91e-01  -2.350          0.989    34.9     22.30    255
## 16    20 8.89e-01  -2.330          0.984    24.9     14.60    216
## 17    22 9.04e-01  -2.280          0.991    18.3      9.91    185
## 18    24 9.15e-01  -2.220          0.994    13.7      6.84    160
## 19    26 9.15e-01  -2.190          0.992    10.5      4.82    140

The soft-power selected for BSTm is 22.

Genes per module in BSTm
moduleColors Freq
antiquewhite4 712
bisque4 111
blue 1123
brown 1067
brown4 1377
coral1 69
coral2 490
darkgrey 720
darkmagenta 317
darkolivegreen 929
darkorange2 1057
darkred 492
green 471
grey 141
grey60 996
ivory 220
lightpink4 82
maroon 317
mediumpurple3 128
navajowhite2 87
paleturquoise 337
royalblue 222
saddlebrown 169
salmon4 2361
skyblue 940
thistle1 96

There appears to be a strong correlation between darkred and salmon4, and inverse between darkmagenta and paleturquoise


12.1 Interesting Modules

12.1.1 darkred - strength

12.1.1.1 Gene Ontology

BP enriched GO terms in darkred module in BSTm
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0038007 netrin-activated signaling pathway 5/420 14/12181 0.0000736 0.0904506 0.0869563 DSCAM/LOC113983017/LOC113988456/LOC113993074/UNC5A 5
GO:1900034 regulation of cellular response to heat 10/420 70/12181 0.0001329 0.0904506 0.0869563 AAAS/ATR/CAMK2B/CREBBP/HSP90AB1/LOC113998422/MLST8/NUP54/NUP62CL/NUP85 10
GO:0090303 positive regulation of wound healing 6/420 26/12181 0.0002075 0.0941361 0.0904994 ACTG1/DMTN/LOC113983017/LOC113983228/LOC113993074/OCLN 6
GO:0043984 histone H4-K16 acetylation 5/420 21/12181 0.0006128 0.2085137 0.2004582 KANSL1/KANSL3/KAT7/KMT2A/MSL1 5
GO:0006909 phagocytosis 7/420 46/12181 0.0009214 0.2508137 0.2411241 LOC113988212/LOC113992314/LOC113993578/LRP1/RUBCN/SYT7/TUSC2 7
GO:0051899 membrane depolarization 5/420 26/12181 0.0017189 0.3342980 0.3213832 CACNA1E/CACNB3/CHRNB2/LOC113993166/LOC114000517 5
GO:0060964 regulation of gene silencing by miRNA 7/420 51/12181 0.0017194 0.3342980 0.3213832 AAAS/LOC113983589/LOC113992597/LOC114003727/NUP54/NUP62CL/NUP85 7
GO:0032786 positive regulation of DNA-templated transcription, elongation 4/420 17/12181 0.0023199 0.3351089 0.3221628 CCNT1/ELL/KAT7/LOC113988658 4
GO:0038096 Fc-gamma receptor signaling pathway involved in phagocytosis 8/420 69/12181 0.0024789 0.3351089 0.3221628 ACTG1/BAIAP2/ELMO2/HSP90AB1/LOC113983017/LOC113983228/LOC113993074/NCKIPSD 8
GO:0034622 cellular protein-containing complex assembly 4/420 18/12181 0.0029024 0.3351089 0.3221628 DNAJB12/LOC113995101/LOC113998422/TRAF2 4

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


12.1.2 darkmagenta - strength

12.1.2.1 Gene Ontology

BP enriched GO terms in darkmagenta module in BSTm
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0055119 relaxation of cardiac muscle 3/256 11/12181 0.0013359 0.5366384 0.5205780 ATP1A1/GSN/RGS2 3
GO:0010887 negative regulation of cholesterol storage 3/256 12/12181 0.0017537 0.5366384 0.5205780 ABCA7/LOC113986559/PPARD 3
GO:0051014 actin filament severing 3/256 12/12181 0.0017537 0.5366384 0.5205780 CAPG/FMNL1/GSN 3
GO:2000377 regulation of reactive oxygen species metabolic process 3/256 14/12181 0.0028127 0.5634260 0.5465639 BCO2/MPV17/PINK1 3
GO:0002028 regulation of sodium ion transport 3/256 15/12181 0.0034618 0.5634260 0.5465639 ADRB2/ATP1A1/LOC113988625 3
GO:0006904 vesicle docking involved in exocytosis 4/256 34/12181 0.0053839 0.5634260 0.5465639 CPLX2/RAB15/RABEPK/VPS33B 4
GO:0043407 negative regulation of MAP kinase activity 4/256 34/12181 0.0053839 0.5634260 0.5465639 CDK5RAP3/LOC113991889/PIK3CB/RGS2 4
GO:0008203 cholesterol metabolic process 5/256 58/12181 0.0072969 0.5634260 0.5465639 ABCA7/LOC113986559/LOC113991750/LRP5/PPARD 5
GO:0030168 platelet activation 6/256 83/12181 0.0079613 0.5634260 0.5465639 ADAMTS13/DGKZ/LOC113984938/LOC113991889/LOC113997278/PIK3CB 6
GO:0051056 regulation of small GTPase mediated signal transduction 8/256 141/12181 0.0098161 0.5634260 0.5465639 ARHGAP17/ARHGAP19/ARHGEF16/INPP5B/LOC113997278/OPHN1/RHOU/SYDE2 8

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


12.1.3 saddlebrown - strength

12.1.3.1 Gene Ontology

BP enriched GO terms in saddlebrown module in BSTm
ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count
GO:0015701 bicarbonate transport 5/128 33/12181 0.0000222 0.0113948 0.0110398 LOC113995938/LOC114003675/RHAG/SLC4A1/SLC4A4 5
GO:0042307 positive regulation of protein import into nucleus 5/128 37/12181 0.0000394 0.0113948 0.0110398 DMAP1/LOC113989827/LOC114001403/SMO/ZC3H12A 5
GO:2000379 positive regulation of reactive oxygen species metabolic process 4/128 20/12181 0.0000495 0.0113948 0.0110398 LOC114001403/NFE2L2/PDGFRB/ZC3H12A 4
GO:2000036 regulation of stem cell population maintenance 3/128 13/12181 0.0003001 0.0518481 0.0502329 SAV1/SMO/TAL1 3
GO:0050801 ion homeostasis 3/128 18/12181 0.0008240 0.1100942 0.1066645 SLC4A1/SLC4A4/WNK4 3
GO:0006635 fatty acid beta-oxidation 4/128 42/12181 0.0009560 0.1100942 0.1066645 DECR1/ECH1/LOC114001403/SESN2 4
GO:0001525 angiogenesis 8/128 203/12181 0.0013439 0.1326657 0.1285329 IL18/JUN/LOC113989827/LOC114001403/PLXND1/TAL1/WASF2/ZC3H12A 8
GO:0098869 cellular oxidant detoxification 4/128 55/12181 0.0026226 0.2265230 0.2194663 LOC113986834/LOC114003675/SELENOW/SESN2 4
GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB signaling 6/128 146/12181 0.0043831 0.3224010 0.3123574 CARD11/LOC113989827/NEK6/TMEM101/TRIM32/WLS 6
GO:0043249 erythrocyte maturation 2/128 10/12181 0.0046657 0.3224010 0.3123574 LOC114001063/TAL1 2

13 WGCNA summary

14 Session Info

## R version 4.0.2 (2020-06-22)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_Australia.1252  LC_CTYPE=English_Australia.1252   
## [3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C                      
## [5] LC_TIME=English_Australia.1252    
## 
## attached base packages:
##  [1] grid      parallel  stats4    stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] enrichplot_1.8.1            AnnotationHub_2.20.2       
##  [3] BiocFileCache_1.12.0        dbplyr_2.1.1               
##  [5] network_1.16.1              RColorBrewer_1.1-2         
##  [7] MASS_7.3-51.6               dplyr_1.0.7                
##  [9] ggnetwork_0.5.8             igraph_1.2.6               
## [11] ggfortify_0.4.11            GGally_2.1.0               
## [13] effectsize_0.8.6            car_3.0-8                  
## [15] carData_3.0-4               viridis_0.6.1              
## [17] viridisLite_0.4.0           rrvgo_1.0.2                
## [19] UpSetR_1.4.0                limma_3.44.3               
## [21] flashClust_1.01-2           org.Hs.eg.db_3.11.4        
## [23] AnnotationDbi_1.50.0        clusterProfiler_3.16.1     
## [25] fdrtool_1.2.15              ggpubr_0.4.0               
## [27] gridExtra_2.3               wesanderson_0.3.6          
## [29] VennDiagram_1.6.20          futile.logger_1.4.3        
## [31] kableExtra_1.3.1            WGCNA_1.69                 
## [33] fastcluster_1.1.25          dynamicTreeCut_1.63-1      
## [35] pheatmap_1.0.12             lubridate_1.8.0            
## [37] DESeq2_1.28.1               SummarizedExperiment_1.18.1
## [39] DelayedArray_0.14.0         matrixStats_0.56.0         
## [41] Biobase_2.48.0              GenomicRanges_1.40.0       
## [43] GenomeInfoDb_1.24.0         IRanges_2.22.2             
## [45] S4Vectors_0.26.1            BiocGenerics_0.34.0        
## [47] stringr_1.4.0               PCAtools_2.0.0             
## [49] cowplot_1.0.0               lattice_0.20-41            
## [51] ggrepel_0.8.2               ggplot2_3.4.4              
## [53] reshape2_1.4.4              plyr_1.8.6                 
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.1                ragg_1.2.1                   
##   [3] tidyr_1.1.4                   acepack_1.4.1                
##   [5] bit64_0.9-7                   knitr_1.29                   
##   [7] irlba_2.3.3                   data.table_1.13.0            
##   [9] rpart_4.1-15                  RCurl_1.98-1.2               
##  [11] doParallel_1.0.15             generics_0.0.2               
##  [13] snow_0.4-3                    preprocessCore_1.50.0        
##  [15] lambda.r_1.2.4                RSQLite_2.2.0                
##  [17] europepmc_0.4                 bit_4.0.4                    
##  [19] webshot_0.5.2                 xml2_1.3.2                   
##  [21] httpuv_1.5.4                  assertthat_0.2.1             
##  [23] xfun_0.29                     hms_1.1.1                    
##  [25] jquerylib_0.1.4               evaluate_0.14                
##  [27] promises_1.1.1                fansi_0.4.1                  
##  [29] progress_1.2.2                readxl_1.3.1                 
##  [31] DBI_1.1.0                     geneplotter_1.66.0           
##  [33] htmlwidgets_1.5.3             reshape_0.8.8                
##  [35] purrr_0.3.4                   ellipsis_0.3.2               
##  [37] backports_1.1.7               insight_0.19.6               
##  [39] annotate_1.66.0               gridBase_0.4-7               
##  [41] vctrs_0.6.5                   abind_1.4-5                  
##  [43] withr_2.5.2                   ggforce_0.3.2                
##  [45] triebeard_0.3.0               treemap_2.4-2                
##  [47] checkmate_2.0.0               prettyunits_1.1.1            
##  [49] cluster_2.1.0                 DOSE_3.14.0                  
##  [51] crayon_1.4.2                  genefilter_1.70.0            
##  [53] pkgconfig_2.0.3               slam_0.1-47                  
##  [55] labeling_0.3                  tweenr_1.0.1                 
##  [57] nlme_3.1-148                  wordcloud_2.6                
##  [59] nnet_7.3-14                   rlang_1.1.2                  
##  [61] lifecycle_1.0.4               downloader_0.4               
##  [63] rsvd_1.0.3                    cellranger_1.1.0             
##  [65] polyclip_1.10-0               datawizard_0.9.0             
##  [67] Matrix_1.6-4                  urltools_1.7.3               
##  [69] base64enc_0.1-3               ggridges_0.5.3               
##  [71] png_0.1-7                     parameters_0.21.3            
##  [73] bitops_1.0-6                  blob_1.2.1                   
##  [75] DelayedMatrixStats_1.10.0     qvalue_2.20.0                
##  [77] jpeg_0.1-8.1                  rstatix_0.7.0                
##  [79] gridGraphics_0.5-1            ggsignif_0.6.0               
##  [81] scales_1.3.0                  memoise_1.1.0                
##  [83] magrittr_2.0.1                zlibbioc_1.34.0              
##  [85] compiler_4.0.2                scatterpie_0.1.5             
##  [87] dqrng_0.2.1                   cli_3.6.1                    
##  [89] XVector_0.28.0                htmlTable_2.0.1              
##  [91] formatR_1.8                   Formula_1.2-3                
##  [93] mgcv_1.8-31                   tidyselect_1.1.0             
##  [95] stringi_1.4.6                 forcats_0.5.1                
##  [97] textshaping_0.3.6             highr_0.8                    
##  [99] yaml_2.2.1                    GOSemSim_2.14.2              
## [101] BiocSingular_1.4.0            locfit_1.5-9.4               
## [103] latticeExtra_0.6-29           fastmatch_1.1-0              
## [105] tools_4.0.2                   rio_0.5.16                   
## [107] rstudioapi_0.13               foreach_1.5.0                
## [109] foreign_0.8-80                farver_2.0.3                 
## [111] ggraph_2.0.5                  digest_0.6.25                
## [113] rvcheck_0.1.8                 BiocManager_1.30.10          
## [115] shiny_1.5.0                   Rcpp_1.0.7                   
## [117] broom_0.7.10                  BiocVersion_3.11.1           
## [119] later_1.1.0.1                 httr_1.4.2                   
## [121] colorspace_1.4-1              rvest_1.0.2                  
## [123] XML_3.99-0.5                  splines_4.0.2                
## [125] graphlayouts_0.7.1            ggplotify_0.0.5              
## [127] systemfonts_1.0.3             xtable_1.8-4                 
## [129] jsonlite_1.7.2                futile.options_1.0.1         
## [131] tidygraph_1.2.0               NLP_0.2-1                    
## [133] R6_2.4.1                      tm_0.7-8                     
## [135] Hmisc_4.4-0                   pillar_1.6.4                 
## [137] htmltools_0.5.2               mime_0.9                     
## [139] glue_1.5.1                    fastmap_1.1.0                
## [141] BiocParallel_1.22.0           interactiveDisplayBase_1.26.3
## [143] codetools_0.2-16              fgsea_1.14.0                 
## [145] utf8_1.1.4                    tibble_3.1.6                 
## [147] curl_4.3                      zip_2.0.4                    
## [149] GO.db_3.11.4                  openxlsx_4.1.5               
## [151] survival_3.2-3                rmarkdown_2.11               
## [153] munsell_0.5.0                 DO.db_2.9                    
## [155] GenomeInfoDbData_1.2.3        iterators_1.0.12             
## [157] impute_1.62.0                 haven_2.3.1                  
## [159] gtable_0.3.0                  bayestestR_0.13.1