## Warning: package 'network' was built under R version 4.0.3
## network: Classes for Relational Data
## Version 1.16.1 created on 2020-10-06.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
## Mark S. Handcock, University of California -- Los Angeles
## David R. Hunter, Penn State University
## Martina Morris, University of Washington
## Skye Bender-deMoll, University of Washington
## For citation information, type citation("network").
## Type help("network-package") to get started.
##
## Attaching package: 'network'
## The following objects are masked from 'package:igraph':
##
## %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,
## get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,
## is.directed, list.edge.attributes, list.vertex.attributes,
## set.edge.attribute, set.vertex.attribute
## The following object is masked from 'package:plyr':
##
## is.discrete
## Loading required package: BiocFileCache
## Loading required package: dbplyr
## Warning: package 'dbplyr' was built under R version 4.0.5
##
## Attaching package: 'dbplyr'
## The following objects are masked from 'package:dplyr':
##
## ident, sql
##
## Attaching package: 'AnnotationHub'
## The following object is masked from 'package:Biobase':
##
## cache
##
## Attaching package: 'enrichplot'
## The following object is masked from 'package:GGally':
##
## ggtable
## The following object is masked from 'package:ggpubr':
##
## color_palette
## The following object is masked from 'package:lattice':
##
## dotplot
key<- read.csv("../data_filtered/data_key_Parsed_ReplicatesRemoved.csv")
behav<- read.csv("../data_unfiltered/PIPFIL_T_and_behav_data.csv")
rownames(key)<- key$X
key$Color_ID<- sub("/","", key$Color_ID)
key<- plyr::rename(key, replace=c("Color_ID"="colorID"))
behav$status<- plyr::revalue(behav$status, c("floa"="floater", "terr"="territorial"))
key_behav<- merge(key, behav, by="colorID")
key_behav<- key_behav[!is.na(key_behav$last_behav),]
#create a data.frame with all of the observations.
not_in_behav<- key[!key$X %in% key_behav$X,]
cols_not_key<- colnames(key_behav)[!colnames(key_behav) %in% colnames(key)]
cols_not_key_df<- data.frame(matrix(NA, nrow = nrow(not_in_behav), ncol = length(cols_not_key)))
colnames(cols_not_key_df)<- cols_not_key
not_in_behav<- cbind(not_in_behav, cols_not_key_df)
key_behav<- rbind(key_behav, not_in_behav)
rownames(key_behav)<- key_behav$X
key_behav<- subset(key_behav, select=c("sampleID", "Year", "Tissue", "Batch", "Status", "Class", "mean_T", "strength.all_study"))
#key_behav$Class<- word(key_behav$Class,1)
key_behav$Tissue<- factor(key_behav$Tissue, levels=c("GON","PIT","VMH","AH","PVN","POM","ICO","GCT","AI","TNA","LS", "BSTm"))
key_behav<- key_behav[order(rownames(key_behav)),]
key_behav$Class<- plyr::revalue(key_behav$Class, replace=c("SCB floater"="Predefinitive floater", "DCB floater "="Definitive floater", "DCB territorial"="Territorial"))
key_behav$Class<- factor(key_behav$Class, levels=c("Predefinitive floater", "Definitive floater", "Territorial"))
rownames(key_behav)<- key_behav$sampleID
key_behav<- key_behav[order(key_behav$sampleID),]
#read the raw count data
data<- read.csv("../data_filtered/data_RawCounts_all_ReplicatesRemoved_antisense_V2.csv")
rownames(data)<- data$X
data$X<- NULL
genes_key<- read.csv("../GO_annotations/Maggies_annotations_modifiedR.csv")
genes_key<- plyr::rename(genes_key, replace=c("GeneID"="gene"))
data_genes<- data.frame(gene=rownames(data))
genes_key<- merge(data_genes, genes_key, by="gene", all.x=TRUE)
genes_key$display_gene_ID<- ifelse(is.na(genes_key$best_anno), as.character(genes_key$gene), ifelse(genes_key$best_anno!=genes_key$gene, paste0(genes_key$gene,"/", genes_key$best_anno), as.character(genes_key$best_anno)))
go_terms<- read.csv("../GO_annotations/pfil_GO_key_raw.csv")
go_terms<- plyr::rename(go_terms, replace=c("GeneID"="gene"))
go2gene_bp<- go_terms[which(go_terms$Aspect=="P"),c("GO_ID", "gene")]
go2gene_mf<- go_terms[which(go_terms$Aspect=="F"),c("GO_ID", "gene")]
go_obo<- read.csv("../GO_annotations/ontology_obo_out.csv")
go_obo<- plyr::rename(go_obo, replace=c("id"="GO_ID"))
go2name_bp<- go_obo[which(go_obo$namespace=="biological_process"),c("GO_ID", "name")]
go2name_mf<- go_obo[which(go_obo$namespace=="molecular_function"),c("GO_ID", "name")]
Gonads (GON)
Like the DESeq2 document, the Gonads section will contain the code
used throughout the the analysis to achieve the full set of results.
First, each dataset is filtered conservatively as per the DESeq2
workflow, and then any batch effects identified in the DEseq workflow
are removed here. Then we create a midweight bicorrelation weighted
signed network using the recommended options. The Topological Overlap
Matrix is also signed.
Data quality
control
tissue<- "GON"
gon_key<- subset(key_behav, Tissue==tissue)
gon_key<- droplevels(gon_key)
gon_data<- data[,colnames(data) %in% rownames(gon_key)]
start<- nrow(gon_data)
#remove genes with less than 5 reads
gon_data$avg_count<- apply(gon_data, 1, mean)
gon_data<- gon_data[gon_data$avg_count>5,]
gon_data$avg_count<-NULL
#gon_data$mad<- apply(gon_data,1,mad)
#gon_data$var<- apply(gon_data, 1, var) # could filter by variance rather than MAD maybe <0.2 but these filtering methods all seem to achieve this.
#remove genes where >50% of samples have 0 gene expression
gon_data$percent_0<- apply(gon_data, 1, function(x)length(x[x==0]))
thresh<- ncol(gon_data)/2
gon_data<- gon_data[gon_data$percent_0<=thresh,]
gon_data$percent_0<-NULL
nrow(gon_data)
## [1] 16169
dd<- DESeqDataSetFromMatrix(countData=gon_data, colData=gon_key, design= ~ Batch)
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 175 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
dd<- dd[which(mcols(dd)$betaConv),]
vsd_data<- getVarianceStabilizedData(dd)
mat<- limma::removeBatchEffect(vsd_data, gon_key$Batch)
datExpr0<- as.data.frame(t(mat))
gsg = goodSamplesGenes(datExpr0, verbose = 3)
## Flagging genes and samples with too many missing values...
## ..step 1
## [1] TRUE
#write.csv(datExpr0, file="GON_vsd_batch_rm.csv")
Soft-threshold
selection
powers<- c(seq(1, 11, by = 1), seq(12, 26, by = 2))
sft<- pickSoftThreshold(datExpr0, powerVector=powers, verbose=0, networkType="signed")
## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 0.0406 16.20 0.920 8090.0 8090.00 8330
## 2 2 0.0284 -3.75 0.684 4440.0 4410.00 4990
## 3 3 0.3020 -5.40 0.739 2610.0 2570.00 3360
## 4 4 0.6060 -4.84 0.877 1630.0 1580.00 2450
## 5 5 0.7690 -4.13 0.946 1070.0 1020.00 1870
## 6 6 0.8240 -3.56 0.972 726.0 675.00 1490
## 7 7 0.8620 -3.20 0.987 511.0 462.00 1230
## 8 8 0.8840 -2.95 0.994 370.0 324.00 1030
## 9 9 0.8980 -2.75 0.996 275.0 232.00 880
## 10 10 0.9070 -2.60 0.995 209.0 169.00 762
## 11 11 0.9090 -2.49 0.992 162.0 125.00 668
## 12 12 0.9090 -2.40 0.987 128.0 93.40 591
## 13 14 0.9020 -2.26 0.977 82.9 54.60 474
## 14 16 0.8920 -2.16 0.967 56.6 33.10 389
## 15 18 0.8740 -2.07 0.949 40.3 20.80 325
## 16 20 0.8780 -1.97 0.946 29.7 13.50 276
## 17 22 0.8660 -1.90 0.933 22.5 8.97 237
## 18 24 0.8510 -1.84 0.913 17.4 6.12 206
## 19 26 0.8540 -1.76 0.909 13.8 4.28 181

The soft power selected will be the first power that that reaches
scale free topology.
Adjacency Matrix
The adjacency matrix was run on an HPC to speed up run time and
prevent overloading my personal computer.
softPower=10
datExpr0<- read.csv("GON_vsd_batch_rm.csv")
rownames(datExpr0)<- datExpr0$X
datExpr0$X<- NULL
adjacency<- adjacency(datExpr0, power = softPower, type="signed")
TOM<- TOMsimilarity(adjacency, TOMtype="signed")
#dissTOM<- 1-TOM
save(adjacency, dissTOM, file="GON_network.RData")
Identify
co-expression modules
load("../WGCNA_results/within_tissues/GON_network.RData")
dissTOM<- 1-TOM
geneTree= flashClust(as.dist(dissTOM), method="average")
#plot(geneTree, xlab="", sub="", main= "Gene Clustering on TOM-based dissimilarity", labels= FALSE, hang=0.04)
minModuleSize<-30
dynamicMods<-cutreeDynamic(dendro= geneTree, distM= dissTOM, deepSplit=2, pamRespectsDendro= FALSE, minClusterSize= minModuleSize)
#table(dynamicMods)
dynamicColors= labels2colors(dynamicMods)
plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut", dendroLabels= FALSE, hang=0.03, addGuide= TRUE, guideHang= 0.05, main= "Gene dendrogram and module colors")

#-----Merge modules whose expression profiles are very similar
MEList= moduleEigengenes(datExpr0, colors= dynamicColors)
MEs= MEList$eigengenes
#Calculate dissimilarity of module eigenegenes
MEDiss= 1-cor(MEs)
#Cluster module eigengenes
METree= flashClust(as.dist(MEDiss), method= "average")

## mergeCloseModules: Merging modules whose distance is less than 0.3
## multiSetMEs: Calculating module MEs.
## Working on set 1 ...
## moduleEigengenes: Calculating 17 module eigengenes in given set.
## multiSetMEs: Calculating module MEs.
## Working on set 1 ...
## moduleEigengenes: Calculating 11 module eigengenes in given set.
## multiSetMEs: Calculating module MEs.
## Working on set 1 ...
## moduleEigengenes: Calculating 10 module eigengenes in given set.
## Calculating new MEs...
## multiSetMEs: Calculating module MEs.
## Working on set 1 ...
## moduleEigengenes: Calculating 10 module eigengenes in given set.
plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors), c("Dynamic Tree Cut", "Merged dynamic"), dendroLabels= FALSE, hang=0.03, addGuide= TRUE, guideHang=0.05)

moduleColors= mergedColors
colorOrder= c("grey", standardColors(50))
moduleLabels= match(moduleColors, colorOrder)-1
MEs=mergedMEs
Module-trait
correlation
datTraits<- gon_key
all.equal(rownames(datExpr0), rownames(datTraits))
datTraits$sampleID<- as.numeric(as.factor(datTraits$sampleID))
datTraits$Status2<- as.numeric(ifelse(datTraits$Status=="territorial",1,0))
datTraits<- subset(datTraits, select=c("sampleID", "Status2", "mean_T", "strength.all_study"))
names(datTraits)[names(datTraits)=="Status2"] <- "Status"
names(datTraits)[names(datTraits)=="sampleID"] <- "Individual"
#-----Define numbers of genes and samples
nGenes = ncol(datExpr0);
nSamples = nrow(datExpr0);
#-----Recalculate MEs with color labels
MEs0 = moduleEigengenes(datExpr0, moduleColors)$eigengenes
MEs = orderMEs(MEs0)
#-----Correlations of genes with eigengenes
moduleGeneCor=cor(MEs,datExpr0)
moduleGenePvalue = corPvalueStudent(moduleGeneCor, nSamples);
moduleTraitCor = cor(MEs, datTraits, use = "p");
moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples);
wgcnasum<- as.data.frame(moduleTraitPvalue)
wgcnasum<- data.frame(Tissue=tissue,
Individual=nrow(wgcnasum[wgcnasum$Individual<0.05,]),
Status=nrow(wgcnasum[wgcnasum$Status<0.05,]),
mean_T=nrow(wgcnasum[wgcnasum$mean_T<0.05,]), strength=nrow(wgcnasum[wgcnasum$strength.all_study<0.05,]),
status_meanT=nrow(wgcnasum[which(wgcnasum$Status<0.05 & wgcnasum$mean_T<0.05),]),
meanT_strength=nrow(wgcnasum[which(wgcnasum$mean_T<0.05 & wgcnasum$strength.all_study<0.05),]),
status_strength=nrow(wgcnasum[which(wgcnasum$Status<0.05 & wgcnasum$strength.all_study<0.05),]),
total_modules=ncol(MEs))
wgcna_summary<- list()
wgcna_summary[[tissue]]<- wgcnasum
#---------------------Module-trait heatmap
textMatrix = paste(signif(moduleTraitCor, 2), "\n(",
signif(moduleTraitPvalue, 1), ")", sep = "");
dim(textMatrix) = dim(moduleTraitCor)
par(mar = c(6, 8.5, 3, 3));
# Display the correlation values within a heatmap plot
labeledHeatmap(Matrix = moduleTraitCor,
xLabels = names(datTraits),
yLabels = names(MEs),
ySymbols = names(MEs),
colorLabels = FALSE,
colors = blueWhiteRed(50),
textMatrix = textMatrix,
setStdMargins = FALSE,
cex.text = 0.5,
zlim = c(-1,1),
main = paste("Module-trait relationships in", tissue))

Genes per module in GON
moduleColors
|
Freq
|
black
|
1361
|
blue
|
2584
|
brown
|
2686
|
cyan
|
140
|
green
|
1431
|
grey60
|
215
|
midnightblue
|
1393
|
pink
|
590
|
salmon
|
243
|
turquoise
|
5526
|
Module Membership and
Gene Significance
#### module membership
datME<- moduleEigengenes(datExpr0,mergedColors)$eigengenes
datKME<- signedKME(datExpr0, datME, outputColumnName="MM.") #use the "signed eigennode connectivity" or module membership
MMPvalue <- as.data.frame(corPvalueStudent(as.matrix(datKME), nSamples)) # Calculate module membership P-values
datKME$gene<- rownames(datKME)
MMPvalue$gene<- rownames(MMPvalue)
genes=names(datExpr0)
geneInfo0 <- data.frame(gene=genes,moduleColor=moduleColors)
geneInfo0 <- merge(geneInfo0, genes_key, by="gene", all.x=TRUE)
color<- merge(geneInfo0, datKME, by="gene") #these are from your original WGCNA analysis
#head(color)
write.csv(as.data.frame(color), file = paste("../WGCNA_results/within_tissues/",tissue,"results_ModuleMembership.csv", sep=""), row.names = FALSE)
MMPvalue<- merge(geneInfo0, MMPvalue, by="gene")
write.csv(MMPvalue, file=paste("../WGCNA_results/within_tissues/",tissue,"_results_ModuleMembership_P-value.csv", sep=""), row.names = FALSE)
#### gene-significance
trait = as.data.frame(datTraits$Status) #change here for traits of interest
names(trait) = "status" #change here for traits of interest
modNames = substring(names(MEs), 3)
geneTraitSignificance = as.data.frame(cor(datExpr0, trait, use = "p"))
GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))
names(geneTraitSignificance) = paste("GS.", names(trait), sep="")
names(GSPvalue) = paste("p.GS.", names(trait), sep="")
GS<- cbind(geneTraitSignificance,GSPvalue)
trait = as.data.frame(datTraits$mean_T)
names(trait)= "mean_T"
geneTraitSignificance = as.data.frame(cor(datExpr0, trait, use = "p"))
GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))
names(geneTraitSignificance) = paste("GS.", names(trait), sep="")
names(GSPvalue) = paste("p.GS.", names(trait), sep="")
GS2<- cbind(geneTraitSignificance,GSPvalue)
trait = as.data.frame(datTraits$strength.all_study)
names(trait)= "strength"
geneTraitSignificance = as.data.frame(cor(datExpr0, trait, use = "p"))
GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))
names(geneTraitSignificance) = paste("GS.", names(trait), sep="")
names(GSPvalue) = paste("p.GS.", names(trait), sep="")
GS3<- cbind(geneTraitSignificance,GSPvalue)
GS$gene<- rownames(GS)
GS<- cbind(GS,GS2, GS3)
GS<- merge(geneInfo0,GS, by="gene")
write.csv(GS, file=paste("../WGCNA_results/within_tissues/",tissue, "_results_GeneSignificance.csv", sep=""), row.names = FALSE)
Intermodule
correlations
# Specify colors
colz<- gsub("ME","",colnames(MEs))
names(colz)<- colnames(MEs)
ann_colors = list(module=colz)
annotation_col<- data.frame(row.names=colnames(MEs), module=colnames(MEs))
correlation<- cor(MEs)
pheatmap(correlation, annotation_col = annotation_col, annotation_colors = ann_colors, annotation_legend=FALSE, legend_breaks = c(-1,-0.5,0,0.5, 1,1),
main=paste("module eigengene correlations in", tissue, sep=" "), legend_labels = c("-1", "-0.5", "0", "0.5","1","correlation\n\n"))

Interesting
modules
Pink module - mean
testosterone
Here I extract the genes associated with a given module and explore
them further. This module is potentially associated with mean
testosterone. The WGCNA manual says that a good association will show a
relationship between the module membership scores of each gene and the
gene-significance for that gene.
whichModule="pink"
modcol=paste("MM.",whichModule,sep="")
module_genes<- color[color$moduleColor==whichModule,]
verboseScatterplot(abs(module_genes[, modcol]),
abs(GS[GS$moduleColor==whichModule, "GS.mean_T"]),
xlab = paste("Module Membership in", whichModule, "module"),
ylab = "Gene significance for mean Testosterone",
main = paste("Module membership vs. gene significance\n"),
cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = whichModule)

Top 30 hub
genes
Next, I am going to explore the top 30 hub genes based on highest
module membership
nTop<-30
#extract the expression of the top 30 genes and sort them based on module membership.
sorted=color$gene[order(color[,modcol],decreasing=T)]
hubs=sorted[1:nTop]
hubs=datExpr0[,match(hubs, colnames(datExpr0))]
### Sort individual data based on the trait value
expDesign<- data.frame(row.names=rownames(gon_key), mean_T=gon_key[,"mean_T"], Status=gon_key[,"Status"])
expDesign<- expDesign[order(expDesign$mean_T),]
ann_cols<- list(Status=c(territorial="#414042",floater="#E54849"))
hubs<- hubs[match(rownames(expDesign), rownames(hubs)), ]
#plot heatmap
pheatmap(hubs,scale="column", cluster_rows = FALSE,cluster_cols = FALSE,show_rownames = TRUE, show_colnames = TRUE,border_color=NA, main=paste(whichModule,"module in",tissue), annotation_row=expDesign, annotation_colors=ann_cols)

Now, let’s plot the top gene in this module to see its relationship
with mean testosterone
gone<- plotCounts(dd, gene="CHRNA3", intgroup=c("mean_T", "Class"), returnData=TRUE)
ggplot(gone, aes(x=mean_T, y=count)) + geom_point(size=2) + labs(title="CHRNA3 in GON",x="mean T", y="Normalised Counts") + peri_theme
## Warning: Removed 4 rows containing missing values
## (`geom_point()`).

##### TOM BASED NETWORK ####
## get names of genes from the module
probes <- names(datExpr0)
inModule <- moduleColors==whichModule #creates logical vector of whether that gene is in the module
modProbes <- probes[inModule]
# Select the corresponding Topological Overlap
modTOM <- TOM[inModule, inModule] #TOM object does not have any gene names so need to use the positional information from the logical vector.
dimnames(modTOM) <- list(modProbes, modProbes)
IMConn<- softConnectivity(datExpr0[, modProbes], power = softPower, type="signed")
names(IMConn)<- modProbes
IMConn<- sort(IMConn, decreasing=T) #rank by highest connectivity
nTop<-30
top<- IMConn[1:nTop] #Take the top genes
top30TOM<- modTOM[names(top),names(top)]
#rename the TOM columns and rows to reflect the locno + gene ID.
top_genes<- module_genes[module_genes$gene %in% names(top),]
top_genes<- top_genes[match(names(top), top_genes$gene), ]
colnames(top30TOM)<- top_genes$display_gene_ID
rownames(top30TOM)<- top_genes$display_gene_ID
vis = exportNetworkToVisANT(top30TOM,
weighted = TRUE,
threshold = 0.00)
#take the top 25% of TOM connections
vis<- vis[vis$weight>summary(vis$weight)[5],]
CoExpGraph <- graph.data.frame(vis, directed=FALSE)
nDegree <- degree(CoExpGraph, v=V(CoExpGraph), mode=c("total"))
V(CoExpGraph)$degree <- nDegree
ggplot(ggnetwork(CoExpGraph, layout=with_fr()), aes(x = x, y = y, xend = xend, yend = yend))+geom_edges(aes(color=weight))+geom_nodes(aes(x,y, size=degree),color="black", alpha=0.7) +scale_color_gradient(low="#ffd71f", high="#e50000")+theme_blank()+ geom_nodetext_repel(aes(label=name))

Gene
Ontology
BP enriched GO terms in pink module in GON
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0001525
|
angiogenesis
|
25/490
|
205/12555
|
0.0000004
|
0.0006380
|
0.0005905
|
ACVR1/ANXA2/APOLD1/ARHGAP22/CCN2/EGF/ENG/FGF1/FOXC1/HSPG2/ID1/JUN/LOC113990968/LOC114000824/LOC114001403/LOC114001849/MAPK14/MMP2/NRCAM/PLXND1/PROK2/ROBO4/SCG2/TGFBI/THY1
|
25
|
GO:0001975
|
response to amphetamine
|
8/490
|
24/12555
|
0.0000022
|
0.0016401
|
0.0015179
|
ASIC3/DBH/PPP1R9B/RGS10/RGS2/RGS4/SLC18A2/TH
|
8
|
GO:0007268
|
chemical synaptic transmission
|
22/490
|
188/12555
|
0.0000041
|
0.0020970
|
0.0019408
|
AKAP5/CACNA1E/CHRNA3/CPLX1/CRH/DBH/FGF12/GAD2/HTR1E/HTR4/LOC113983406/LOC113990721/NPY/PLP1/PMP22/SLC18A2/SLC6A2/SNCA/SNCG/SV2B/SYN2/SYT1
|
22
|
GO:0044267
|
cellular protein metabolic process
|
20/490
|
165/12555
|
0.0000066
|
0.0025184
|
0.0023308
|
ADORA2B/ANO8/B2M/CHGB/CTSH/FURIN/HSPG2/LAMB2/LGALS1/LOC113986369/LOC114003910/LYZ/MMP2/SCG2/SCG3/SFTPB/SFTPC/SNCA/SNCAIP/TGFBI
|
20
|
GO:0009749
|
response to glucose
|
10/490
|
51/12555
|
0.0000226
|
0.0068942
|
0.0063809
|
ACVR1C/ADIPOQ/CCN2/FKBP1B/GJA1/LOC113992227/LPL/SARM1/SREBF1/TXNIP
|
10
|
GO:0010628
|
positive regulation of gene expression
|
27/490
|
310/12555
|
0.0000826
|
0.0189665
|
0.0175543
|
CCN2/CITED2/CRH/CTSH/EGF/FGF1/GATA5/GJA1/ID1/IL34/LOC113992691/LOC114001703/LRRC32/MAPK14/MYC/NOS1AP/NR5A1/OSR1/OSR2/PDE2A/PLP1/SLC26A9/SLC6A4/STAR/STAT3/TWIST1/ZNF804A
|
27
|
GO:0051412
|
response to corticosterone
|
5/490
|
13/12555
|
0.0000880
|
0.0189665
|
0.0175543
|
CRH/LOC113992757/NEFL/STAR/TH
|
5
|
GO:0009617
|
response to bacterium
|
9/490
|
49/12555
|
0.0000996
|
0.0189665
|
0.0175543
|
ADIPOQ/CCDC80/CLPS/DGKB/FKBP5/LOC114003559/LPL/RGS1/VIL1
|
9
|
GO:0050679
|
positive regulation of epithelial cell proliferation
|
9/490
|
55/12555
|
0.0002504
|
0.0399249
|
0.0369522
|
ATP7A/DLX5/FGF1/ID1/MYC/NR4A3/OSR1/OSR2/TWIST1
|
9
|
GO:0010977
|
negative regulation of neuron projection development
|
9/490
|
56/12555
|
0.0002882
|
0.0399249
|
0.0369522
|
B2M/INPP5J/LGALS1/LOC114000824/NR2F1/PRAG1/RTN4RL2/STMN2/VIM
|
9
|

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

Pituitary (PIT)
The code for this tissue is mostly above, but each section the R
environment is cleared to only keep the base data.
keep<- c("data", "peri_theme", "key","key_behav","dodge","genes_key", "keep", "go2gene_mf","go2name_mf","go2gene_bp","go2name_bp", "wgcna_summary")
rm(list= ls()[!(ls() %in% keep)])
## [1] 14812
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 101 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## Flagging genes and samples with too many missing values...
## ..step 1
## [1] TRUE
## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 0.003630 -4.320 0.856 7410.0 7420.0 7640
## 2 2 0.000786 0.449 0.935 4240.0 4230.0 4720
## 3 3 0.002610 -0.375 0.918 2650.0 2640.0 3310
## 4 4 0.027300 -0.758 0.906 1780.0 1750.0 2490
## 5 5 0.091300 -1.030 0.896 1250.0 1220.0 1960
## 6 6 0.181000 -1.180 0.892 911.0 881.0 1600
## 7 7 0.279000 -1.310 0.890 687.0 654.0 1340
## 8 8 0.375000 -1.420 0.892 531.0 498.0 1140
## 9 9 0.455000 -1.490 0.896 419.0 386.0 985
## 10 10 0.517000 -1.580 0.894 337.0 304.0 863
## 11 11 0.578000 -1.620 0.908 275.0 243.0 764
## 12 12 0.619000 -1.670 0.911 228.0 196.0 681
## 13 14 0.675000 -1.750 0.914 161.0 133.0 554
## 14 16 0.707000 -1.810 0.913 118.0 92.7 460
## 15 18 0.712000 -1.890 0.903 89.3 66.3 389
## 16 20 0.732000 -1.920 0.912 69.1 48.5 334
## 17 22 0.751000 -1.930 0.922 54.6 36.4 290
## 18 24 0.757000 -1.970 0.925 43.8 27.8 254
## 19 26 0.775000 -1.970 0.934 35.7 21.5 224

The soft-power selected for PIT is 18.

Genes per module in PIT
moduleColors
|
Freq
|
bisque4
|
1328
|
blue
|
1594
|
blue2
|
156
|
brown4
|
208
|
coral1
|
2779
|
coral2
|
382
|
coral3
|
59
|
darkgreen
|
397
|
darkgrey
|
883
|
darkolivegreen2
|
589
|
darkolivegreen4
|
253
|
darkorange2
|
126
|
darkslateblue
|
936
|
darkviolet
|
72
|
firebrick3
|
1601
|
floralwhite
|
295
|
honeydew
|
61
|
lightcyan1
|
133
|
lightgreen
|
1798
|
orangered3
|
84
|
palevioletred2
|
66
|
pink4
|
265
|
plum1
|
140
|
plum2
|
176
|
sienna4
|
56
|
violet
|
375
|

Interesting
Modules
floralwhite module
- strength
This module is associated with social network strength.


## softConnectivity: FYI: connecitivty of genes with less than 4 valid samples will be returned as NA.
## ..calculating connectivities..

This module is too influenced by PFT3. This is a sample I removed in
the DESeq2 analysis. Disregard.
pink4 module -
strength
This module is also associated with social network strength



Gene
Ontology
BP enriched GO terms in pink4 module in PIT
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0007288
|
sperm axoneme assembly
|
4/214
|
20/12079
|
0.0003714
|
0.1318112
|
0.1312432
|
ARMC2/CFAP206/SPEF2/TTLL1
|
4
|
GO:0031647
|
regulation of protein stability
|
7/214
|
76/12079
|
0.0003854
|
0.1318112
|
0.1312432
|
APTX/ATF7IP/DPM2/LOC113993664/MOSMO/PINX1/QRSL1
|
7
|
GO:0006362
|
transcription elongation from RNA polymerase I promoter
|
3/214
|
23/12079
|
0.0074766
|
0.6320762
|
0.6293525
|
CCNH/ERCC3/TAF1A
|
3
|
GO:0050821
|
protein stabilization
|
8/214
|
162/12079
|
0.0082095
|
0.6320762
|
0.6293525
|
ATF7IP/CCNH/CCT6A/GAPDH/GTPBP4/MFSD1/NCLN/TBL1XR1
|
8
|
GO:0006363
|
termination of RNA polymerase I transcription
|
3/214
|
24/12079
|
0.0084346
|
0.6320762
|
0.6293525
|
CCNH/ERCC3/TAF1A
|
3
|
GO:0006890
|
retrograde vesicle-mediated transport, Golgi to endoplasmic reticulum
|
5/214
|
73/12079
|
0.0094384
|
0.6320762
|
0.6293525
|
ARFGAP2/COPB1/KIFAP3/PITPNB/RINT1
|
5
|
GO:0006361
|
transcription initiation from RNA polymerase I promoter
|
3/214
|
25/12079
|
0.0094614
|
0.6320762
|
0.6293525
|
CCNH/ERCC3/TAF1A
|
3
|
GO:0006310
|
DNA recombination
|
4/214
|
51/12079
|
0.0125004
|
0.6320762
|
0.6293525
|
ACTR8/KIN/LOC113982971/SUPV3L1
|
4
|
GO:0000226
|
microtubule cytoskeleton organization
|
6/214
|
109/12079
|
0.0128965
|
0.6320762
|
0.6293525
|
GAPDH/KNSTRN/MARK3/PRKCZ/TTLL1/TUBA8
|
6
|
GO:0070085
|
glycosylation
|
2/214
|
11/12079
|
0.0154662
|
0.6320762
|
0.6293525
|
B4GALT4/LOC113992792
|
2
|

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

Anterior Hypothalamus
(AH)
## [1] 14928
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 0.000105 -2.410 0.986 7460.0 7460.0 7550
## 2 2 0.065400 4.700 0.810 4330.0 4330.0 4730
## 3 3 0.052000 1.330 0.796 2760.0 2760.0 3340
## 4 4 0.003500 -0.203 0.819 1880.0 1880.0 2550
## 5 5 0.077200 -0.705 0.850 1350.0 1340.0 2050
## 6 6 0.196000 -0.959 0.881 1000.0 989.0 1700
## 7 7 0.324000 -1.130 0.906 768.0 749.0 1440
## 8 8 0.429000 -1.250 0.925 603.0 579.0 1240
## 9 9 0.510000 -1.340 0.940 483.0 455.0 1090
## 10 10 0.577000 -1.420 0.945 393.0 364.0 967
## 11 11 0.632000 -1.490 0.953 325.0 295.0 866
## 12 12 0.666000 -1.550 0.954 272.0 241.0 781
## 13 14 0.724000 -1.620 0.965 196.0 166.0 648
## 14 16 0.761000 -1.680 0.970 147.0 118.0 549
## 15 18 0.792000 -1.730 0.976 113.0 85.8 472
## 16 20 0.808000 -1.770 0.977 88.7 63.9 411
## 17 22 0.821000 -1.800 0.978 71.0 48.6 362
## 18 24 0.833000 -1.820 0.982 57.8 37.5 321
## 19 26 0.833000 -1.850 0.979 47.6 29.4 288

The soft-power selected for AH is 18.

Genes per module in AH
moduleColors
|
Freq
|
antiquewhite2
|
63
|
antiquewhite4
|
2152
|
bisque4
|
383
|
blue2
|
1283
|
blue4
|
141
|
blueviolet
|
239
|
coral3
|
63
|
darkmagenta
|
131
|
darkolivegreen2
|
193
|
darkolivegreen4
|
147
|
darkseagreen3
|
1754
|
darkslateblue
|
107
|
darkviolet
|
578
|
firebrick3
|
417
|
firebrick4
|
72
|
greenyellow
|
1308
|
honeydew1
|
178
|
indianred3
|
120
|
lavenderblush2
|
64
|
lightcyan
|
310
|
lightpink2
|
41
|
lightslateblue
|
152
|
magenta4
|
123
|
maroon
|
96
|
mediumpurple1
|
56
|
mediumpurple2
|
75
|
navajowhite
|
104
|
orangered4
|
1148
|
plum
|
317
|
plum4
|
49
|
royalblue
|
2177
|
salmon1
|
45
|
skyblue2
|
86
|
tan
|
469
|
violet
|
137
|
yellow3
|
62
|
yellow4
|
86
|

Interesting
Modules
mediumpurple1
module - Status



Gene
Ontology
BP enriched GO terms in mediumpurple1 module in AH
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0016082
|
synaptic vesicle priming
|
3/48
|
20/12138
|
0.0000631
|
0.0101610
|
0.0086999
|
LOC113987015/LOC113991140/LOC113993758
|
3
|
GO:0016079
|
synaptic vesicle exocytosis
|
3/48
|
23/12138
|
0.0000972
|
0.0101610
|
0.0086999
|
LOC113987015/LOC113991140/LOC113993758
|
3
|
GO:0007009
|
plasma membrane organization
|
3/48
|
28/12138
|
0.0001774
|
0.0123577
|
0.0105807
|
LOC113987015/LOC113991140/LOC113993758
|
3
|
GO:0006406
|
mRNA export from nucleus
|
4/48
|
96/12138
|
0.0005477
|
0.0249930
|
0.0213992
|
DDX25/LOC113993656/LOC114004318/NUP160
|
4
|
GO:0061025
|
membrane fusion
|
3/48
|
42/12138
|
0.0005979
|
0.0249930
|
0.0213992
|
LOC113987015/LOC113991140/LOC113993758
|
3
|
GO:0038063
|
collagen-activated tyrosine kinase receptor signaling pathway
|
2/48
|
13/12138
|
0.0011617
|
0.0346858
|
0.0296983
|
LOC113998275/OTOL1
|
2
|
GO:0098789
|
pre-mRNA cleavage required for polyadenylation
|
2/48
|
13/12138
|
0.0011617
|
0.0346858
|
0.0296983
|
LOC113993656/LOC114004318
|
2
|
GO:0006388
|
tRNA splicing, via endonucleolytic cleavage and ligation
|
2/48
|
15/12138
|
0.0015560
|
0.0406503
|
0.0348051
|
LOC113993656/LOC114004318
|
2
|
GO:0016254
|
preassembly of GPI anchor in ER membrane
|
2/48
|
16/12138
|
0.0017738
|
0.0411915
|
0.0352685
|
PIGV/PIGX
|
2
|
GO:0006637
|
acyl-CoA metabolic process
|
2/48
|
22/12138
|
0.0033633
|
0.0702937
|
0.0601860
|
GPAT4/HMGCL
|
2
|
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

tan module -
Status
Also the inverse module of the mediumpurple1 module based on the
intermodule correlation plot



Gene
Ontology
BP enriched GO terms in tan module in AH
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0070125
|
mitochondrial translational elongation
|
10/351
|
87/12138
|
0.0001990
|
0.2147199
|
0.2128242
|
CHCHD1/MRPL14/MRPL24/MRPL35/MRPL36/MRPL51/MRPL54/MRPS18C/MRPS22/TSFM
|
10
|
GO:0016075
|
rRNA catabolic process
|
4/351
|
14/12138
|
0.0005467
|
0.2949453
|
0.2923413
|
EXOSC4/EXOSC6/TRIR/XRN1
|
4
|
GO:0070126
|
mitochondrial translational termination
|
9/351
|
87/12138
|
0.0008986
|
0.3231911
|
0.3203377
|
CHCHD1/MRPL14/MRPL24/MRPL35/MRPL36/MRPL51/MRPL54/MRPS18C/MRPS22
|
9
|
GO:0055088
|
lipid homeostasis
|
5/351
|
31/12138
|
0.0017973
|
0.3598964
|
0.3567189
|
ABHD5/CEBPA/DDX3X/LOC114000584/LOC114001595
|
5
|
GO:0090503
|
RNA phosphodiester bond hydrolysis, exonucleolytic
|
5/351
|
33/12138
|
0.0023947
|
0.3598964
|
0.3567189
|
DCP2/EXOSC4/EXOSC6/TRIR/XRN1
|
5
|
GO:0009650
|
UV protection
|
3/351
|
10/12138
|
0.0024730
|
0.3598964
|
0.3567189
|
ERCC4/LOC113992976/XPA
|
3
|
GO:0071028
|
nuclear mRNA surveillance
|
3/351
|
10/12138
|
0.0024730
|
0.3598964
|
0.3567189
|
EXOSC4/EXOSC6/XRN1
|
3
|
GO:0030308
|
negative regulation of cell growth
|
9/351
|
104/12138
|
0.0031382
|
0.3598964
|
0.3567189
|
ADIPOR1/APBB1/BTG1/DDX3X/LOC113996102/LOC113999325/PPP2CA/PSRC1/VGLL4
|
9
|
GO:0045930
|
negative regulation of mitotic cell cycle
|
4/351
|
22/12138
|
0.0033278
|
0.3598964
|
0.3567189
|
BTG1/CDKN1C/FOXC1/LOC113996102
|
4
|
GO:0009411
|
response to UV
|
5/351
|
36/12138
|
0.0035441
|
0.3598964
|
0.3567189
|
ERCC4/ERCC6/LOC113992976/LOC114000584/LOC114001595
|
5
|
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

Paraventricular Nucleus
(PVN)
## [1] 15153
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 15 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 0.0195 19.20 0.743 7580.0 7580.0 7660
## 2 2 0.4010 -9.84 0.711 4300.0 4240.0 4880
## 3 3 0.4960 -3.59 0.645 2660.0 2570.0 3470
## 4 4 0.6420 -2.55 0.757 1760.0 1660.0 2670
## 5 5 0.7320 -2.27 0.844 1220.0 1110.0 2180
## 6 6 0.8040 -2.09 0.901 883.0 776.0 1840
## 7 7 0.8580 -1.99 0.937 658.0 556.0 1580
## 8 8 0.8910 -1.93 0.957 504.0 408.0 1390
## 9 9 0.9080 -1.90 0.964 395.0 306.0 1240
## 10 10 0.9180 -1.87 0.967 315.0 233.0 1110
## 11 11 0.9320 -1.83 0.975 256.0 180.0 1010
## 12 12 0.9330 -1.82 0.974 211.0 141.0 924
## 13 14 0.9330 -1.79 0.969 148.0 89.5 785
## 14 16 0.9400 -1.76 0.974 108.0 59.1 679
## 15 18 0.9440 -1.73 0.976 81.4 40.2 596
## 16 20 0.9390 -1.71 0.972 62.9 28.1 528
## 17 22 0.9390 -1.69 0.974 49.7 20.2 472
## 18 24 0.9340 -1.68 0.971 39.9 14.8 424
## 19 26 0.9240 -1.68 0.964 32.6 11.0 384

The soft-power selected for PVN is 9.

Genes per module in PVN
moduleColors
|
Freq
|
black
|
438
|
blue
|
5377
|
darkgreen
|
383
|
darkmagenta
|
75
|
darkolivegreen
|
348
|
darkorange
|
394
|
darkred
|
664
|
darkturquoise
|
181
|
green
|
555
|
greenyellow
|
886
|
midnightblue
|
646
|
paleturquoise
|
159
|
saddlebrown
|
106
|
sienna3
|
73
|
steelblue
|
106
|
turquoise
|
4631
|
white
|
129
|

It doesn’t appear that our interesting module white is
associated with any other module of interest.
Interesting
Modules
white module -
status



Gene
Ontology
BP enriched GO terms in white module in PVN
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0006388
|
tRNA splicing, via endonucleolytic cleavage and ligation
|
3/104
|
15/12249
|
0.0002512
|
0.1233371
|
0.1197807
|
CLP1/CPSF4/RTCB
|
3
|
GO:0006270
|
DNA replication initiation
|
3/104
|
28/12249
|
0.0016693
|
0.2736082
|
0.2657187
|
MCM3/MCM5/ORC1
|
3
|
GO:0032922
|
circadian regulation of gene expression
|
4/104
|
70/12249
|
0.0029266
|
0.2736082
|
0.2657187
|
DRD3/LOC113996216/LOC113999640/USP2
|
4
|
GO:0006094
|
gluconeogenesis
|
3/104
|
35/12249
|
0.0031947
|
0.2736082
|
0.2657187
|
ENO1/MDH1/PGK1
|
3
|
GO:0000727
|
double-strand break repair via break-induced replication
|
2/104
|
11/12249
|
0.0037356
|
0.2736082
|
0.2657187
|
MCM3/MCM5
|
2
|
GO:0045598
|
regulation of fat cell differentiation
|
2/104
|
11/12249
|
0.0037356
|
0.2736082
|
0.2657187
|
LOC113996216/LOC113999640
|
2
|
GO:0098609
|
cell-cell adhesion
|
5/104
|
124/12249
|
0.0040602
|
0.2736082
|
0.2657187
|
ANXA2/FAT2/FBLIM1/LOC113988363/PDLIM1
|
5
|
GO:0006953
|
acute-phase response
|
2/104
|
12/12249
|
0.0044580
|
0.2736082
|
0.2657187
|
AHSG/IL6R
|
2
|
GO:0000956
|
nuclear-transcribed mRNA catabolic process
|
2/104
|
13/12249
|
0.0052395
|
0.2858411
|
0.2775989
|
LOC113987020/XRN2
|
2
|
GO:1903146
|
regulation of autophagy of mitochondrion
|
2/104
|
15/12249
|
0.0069756
|
0.3425008
|
0.3326248
|
ATP13A2/PINK1
|
2
|
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

Midbrain Central Grey
(GCt)
## [1] 15099
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 11717 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 0.00530 -12.10 0.974 7550.0 7550.0 7660
## 2 2 0.00467 -1.64 0.886 4270.0 4270.0 4610
## 3 3 0.11400 -3.30 0.881 2630.0 2630.0 3140
## 4 4 0.15500 -2.43 0.877 1730.0 1720.0 2300
## 5 5 0.21600 -2.10 0.884 1190.0 1180.0 1760
## 6 6 0.29000 -1.97 0.894 852.0 837.0 1400
## 7 7 0.36600 -1.90 0.905 630.0 612.0 1140
## 8 8 0.43600 -1.87 0.916 478.0 458.0 947
## 9 9 0.50200 -1.89 0.922 371.0 350.0 802
## 10 10 0.55800 -1.91 0.929 293.0 272.0 688
## 11 11 0.60100 -1.92 0.934 235.0 214.0 597
## 12 12 0.63700 -1.95 0.938 191.0 171.0 524
## 13 14 0.69900 -1.97 0.951 131.0 112.0 412
## 14 16 0.72900 -2.03 0.954 93.7 76.7 336
## 15 18 0.74400 -2.10 0.952 69.0 54.0 281
## 16 20 0.76500 -2.14 0.960 52.1 39.0 238
## 17 22 0.77000 -2.18 0.960 40.3 28.6 204
## 18 24 0.78400 -2.20 0.966 31.7 21.5 177
## 19 26 0.79200 -2.21 0.970 25.3 16.4 154

The soft-power selected for GCT is 18.

Genes per module in GCT
moduleColors
|
Freq
|
antiquewhite1
|
34
|
antiquewhite2
|
132
|
antiquewhite4
|
95
|
bisque4
|
2333
|
black
|
914
|
brown2
|
156
|
chocolate4
|
79
|
coral
|
113
|
coral1
|
179
|
coral3
|
360
|
cyan
|
1252
|
darkgreen
|
194
|
darkgrey
|
408
|
darkolivegreen2
|
1719
|
darkolivegreen4
|
1267
|
darkseagreen2
|
40
|
darkseagreen3
|
174
|
deeppink
|
1490
|
firebrick3
|
53
|
floralwhite
|
582
|
green4
|
40
|
indianred3
|
53
|
lightcoral
|
83
|
lightpink2
|
47
|
lightpink3
|
70
|
mediumpurple1
|
134
|
mediumpurple2
|
155
|
mediumpurple4
|
63
|
navajowhite
|
1335
|
orangered3
|
274
|
pink4
|
302
|
plum
|
89
|
plum4
|
51
|
saddlebrown
|
161
|
salmon2
|
72
|
sienna4
|
60
|
skyblue2
|
152
|
skyblue4
|
62
|
tan
|
230
|
yellow4
|
92
|

There appears to be a strong correlation between skyblue2
and green4, which are associated with strength.
Interesting
Modules
skyblue2 -
strength



I’m not convinced. Let’s move on to correlations with stronger
p-values
lightpink3 - mean
testosterone



Gene
Ontology
BP enriched GO terms in lightpink3 module in GCT
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0070528
|
protein kinase C signaling
|
2/58
|
10/12240
|
0.0009691
|
0.2332786
|
0.2190439
|
LOC113994699/PLEK
|
2
|
GO:0033540
|
fatty acid beta-oxidation using acyl-CoA oxidase
|
2/58
|
13/12240
|
0.0016646
|
0.2332786
|
0.2190439
|
EHHADH/HSD17B4
|
2
|
GO:0032703
|
negative regulation of interleukin-2 production
|
2/58
|
21/12240
|
0.0043738
|
0.2332786
|
0.2190439
|
CD34/LOC113986241
|
2
|
GO:0043392
|
negative regulation of DNA binding
|
2/58
|
21/12240
|
0.0043738
|
0.2332786
|
0.2190439
|
JUN/NFKBIA
|
2
|
GO:0006958
|
complement activation, classical pathway
|
2/58
|
24/12240
|
0.0056963
|
0.2332786
|
0.2190439
|
LOC113984271/LOC113986241
|
2
|
GO:0034080
|
CENP-A containing nucleosome assembly
|
2/58
|
28/12240
|
0.0077074
|
0.2332786
|
0.2190439
|
CENPT/HJURP
|
2
|
GO:0000082
|
G1/S transition of mitotic cell cycle
|
3/58
|
87/12240
|
0.0080763
|
0.2332786
|
0.2190439
|
EIF4EBP1/MCM2/PLK2
|
3
|
GO:0051591
|
response to cAMP
|
2/58
|
29/12240
|
0.0082533
|
0.2332786
|
0.2190439
|
DUSP1/JUN
|
2
|
GO:0046627
|
negative regulation of insulin receptor signaling pathway
|
2/58
|
33/12240
|
0.0106042
|
0.2332786
|
0.2190439
|
PRKCQ/SOCS1
|
2
|
GO:0045746
|
negative regulation of Notch signaling pathway
|
2/58
|
37/12240
|
0.0132150
|
0.2332786
|
0.2190439
|
NFKBIA/TCIM
|
2
|
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

antiquewhite1 -
strength



Gene
Ontology
BP enriched GO terms in antiquewhite1 module in GCT
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0043044
|
ATP-dependent chromatin remodeling
|
2/27
|
36/12240
|
0.0028188
|
0.1458146
|
0.1121232
|
MBD3/SMARCA5
|
2
|
GO:1990830
|
cellular response to leukemia inhibitory factor
|
2/27
|
77/12240
|
0.0123845
|
0.1458146
|
0.1121232
|
SMARCA5/SPRY2
|
2
|
GO:0006613
|
cotranslational protein targeting to membrane
|
1/27
|
10/12240
|
0.0218491
|
0.1458146
|
0.1121232
|
SRP14
|
1
|
GO:0030518
|
intracellular steroid hormone receptor signaling pathway
|
1/27
|
10/12240
|
0.0218491
|
0.1458146
|
0.1121232
|
PGR
|
1
|
GO:0106074
|
aminoacyl-tRNA metabolism involved in translational fidelity
|
1/27
|
10/12240
|
0.0218491
|
0.1458146
|
0.1121232
|
DTD1
|
1
|
GO:0002031
|
G protein-coupled receptor internalization
|
1/27
|
11/12240
|
0.0240085
|
0.1458146
|
0.1121232
|
SAG
|
1
|
GO:0042474
|
middle ear morphogenesis
|
1/27
|
11/12240
|
0.0240085
|
0.1458146
|
0.1121232
|
TSHZ1
|
1
|
GO:0050678
|
regulation of epithelial cell proliferation
|
1/27
|
11/12240
|
0.0240085
|
0.1458146
|
0.1121232
|
PGR
|
1
|
GO:0070914
|
UV-damage excision repair
|
1/27
|
11/12240
|
0.0240085
|
0.1458146
|
0.1121232
|
DDB2
|
1
|
GO:0098974
|
postsynaptic actin cytoskeleton organization
|
1/27
|
11/12240
|
0.0240085
|
0.1458146
|
0.1121232
|
LOC113998505
|
1
|
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

antiquewhite2 -
strength



Gene
Ontology
BP enriched GO terms in antiquewhite2 module in GCT
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0009566
|
fertilization
|
3/95
|
21/12240
|
0.0005443
|
0.1091090
|
0.1091090
|
AAAS/LOC114000708/MEIOB
|
3
|
GO:0046854
|
phosphatidylinositol phosphorylation
|
4/95
|
50/12240
|
0.0005968
|
0.1091090
|
0.1091090
|
FAM126A/PIK3C3/PIK3CB/PIK3R6
|
4
|
GO:0090305
|
nucleic acid phosphodiester bond hydrolysis
|
4/95
|
54/12240
|
0.0008003
|
0.1091090
|
0.1091090
|
DCLRE1C/EXD2/LOC114001323/MEIOB
|
4
|
GO:0010975
|
regulation of neuron projection development
|
3/95
|
29/12240
|
0.0014298
|
0.1461951
|
0.1461951
|
IL1RAPL1/LOC113992691/MARK1
|
3
|
GO:0019229
|
regulation of vasoconstriction
|
2/95
|
12/12240
|
0.0037400
|
0.2549409
|
0.2549409
|
ECE1/EDN3
|
2
|
GO:0036092
|
phosphatidylinositol-3-phosphate biosynthetic process
|
2/95
|
12/12240
|
0.0037400
|
0.2549409
|
0.2549409
|
PIK3C3/PIK3CB
|
2
|
GO:0002009
|
morphogenesis of an epithelium
|
2/95
|
14/12240
|
0.0051048
|
0.2982672
|
0.2982672
|
FRAS1/RIPK4
|
2
|
GO:0000729
|
DNA double-strand break processing
|
2/95
|
15/12240
|
0.0058605
|
0.2996201
|
0.2996201
|
EXD2/LOC114001323
|
2
|
GO:0048873
|
homeostasis of number of cells within a tissue
|
2/95
|
21/12240
|
0.0113724
|
0.3877285
|
0.3877285
|
ADD1/LOC114000708
|
2
|
GO:0090023
|
positive regulation of neutrophil chemotaxis
|
2/95
|
21/12240
|
0.0113724
|
0.3877285
|
0.3877285
|
MCU/MOSPD2
|
2
|
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

coral1 -
strength



Gene
Ontology
BP enriched GO terms in coral1 module in GCT
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0007275
|
multicellular organism development
|
11/149
|
303/12240
|
0.0011903
|
0.5366347
|
0.5366347
|
CDH8/DGKD/EPHA5/ERBB4/ERMARD/NELFA/PAQR5/STRBP/TDRD9/VIRMA/WIF1
|
11
|
GO:0071392
|
cellular response to estradiol stimulus
|
3/149
|
31/12240
|
0.0061911
|
0.5366347
|
0.5366347
|
ESR2/NCOA3/NRIP1
|
3
|
GO:0030518
|
intracellular steroid hormone receptor signaling pathway
|
2/149
|
10/12240
|
0.0062129
|
0.5366347
|
0.5366347
|
ESR2/NR3C1
|
2
|
GO:2000010
|
positive regulation of protein localization to cell surface
|
2/149
|
11/12240
|
0.0075332
|
0.5366347
|
0.5366347
|
ERBB4/MAP1A
|
2
|
GO:0042472
|
inner ear morphogenesis
|
3/149
|
36/12240
|
0.0094090
|
0.5366347
|
0.5366347
|
ALDH1A3/GBX2/PRRX1
|
3
|
GO:0018105
|
peptidyl-serine phosphorylation
|
6/149
|
148/12240
|
0.0094306
|
0.5366347
|
0.5366347
|
CAB39/CAMK1D/MAPK14/MAPKAPK5/SGK2/WNK1
|
6
|
GO:0032793
|
positive regulation of CREB transcription factor activity
|
2/149
|
14/12240
|
0.0121698
|
0.5366347
|
0.5366347
|
CAMK1D/EPHA5
|
2
|
GO:0002028
|
regulation of sodium ion transport
|
2/149
|
15/12240
|
0.0139309
|
0.5366347
|
0.5366347
|
LOC113983777/WNK1
|
2
|
GO:0050773
|
regulation of dendrite development
|
2/149
|
15/12240
|
0.0139309
|
0.5366347
|
0.5366347
|
CAMK1D/CSMD3
|
2
|
GO:0001755
|
neural crest cell migration
|
3/149
|
45/12240
|
0.0172755
|
0.5366347
|
0.5366347
|
ERBB4/GBX2/SEMA5B
|
3
|
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

Nucleus Taenia
(TnA)
## [1] 14696
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 33 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 9.27e-03 15.90000 0.870 7350.00 7350.00 7430.0
## 2 2 2.09e-03 -2.39000 0.926 4010.00 4000.00 4300.0
## 3 3 4.48e-03 1.51000 0.968 2330.00 2330.00 2730.0
## 4 4 1.51e-02 1.62000 0.973 1440.00 1430.00 1840.0
## 5 5 1.31e-02 1.02000 0.971 922.00 912.00 1310.0
## 6 6 1.39e-02 0.77800 0.973 614.00 604.00 958.0
## 7 7 3.84e-03 0.31700 0.964 422.00 412.00 724.0
## 8 8 4.59e-06 0.00917 0.955 298.00 288.00 564.0
## 9 9 2.28e-02 -0.57300 0.944 215.00 206.00 452.0
## 10 10 9.46e-02 -1.07000 0.938 159.00 150.00 369.0
## 11 11 2.05e-01 -1.44000 0.940 119.00 111.00 306.0
## 12 12 3.35e-01 -1.76000 0.952 90.60 83.60 257.0
## 13 14 5.72e-01 -2.18000 0.978 54.90 49.10 186.0
## 14 16 7.14e-01 -2.41000 0.991 34.80 30.10 140.0
## 15 18 7.92e-01 -2.54000 0.996 22.90 19.10 108.0
## 16 20 8.29e-01 -2.64000 0.993 15.60 12.50 84.7
## 17 22 8.55e-01 -2.68000 0.994 10.90 8.45 67.8
## 18 24 8.75e-01 -2.68000 0.997 7.83 5.83 55.1
## 19 26 8.92e-01 -2.67000 0.998 5.73 4.11 45.4

The soft-power selected for TNA is 18.

Genes per module in TNA
moduleColors
|
Freq
|
antiquewhite2
|
53
|
antiquewhite4
|
140
|
black
|
1096
|
blue
|
1787
|
blue2
|
470
|
brown4
|
106
|
coral1
|
1579
|
coral3
|
2067
|
darkgrey
|
254
|
darkorange
|
1383
|
darkorange2
|
1848
|
darkseagreen4
|
372
|
grey
|
5
|
honeydew
|
55
|
lavenderblush3
|
217
|
lightsteelblue
|
612
|
lightyellow
|
585
|
magenta4
|
59
|
mediumpurple4
|
49
|
navajowhite1
|
60
|
orangered3
|
81
|
orangered4
|
954
|
palevioletred3
|
95
|
skyblue1
|
82
|
skyblue2
|
84
|
skyblue4
|
44
|
tan
|
457
|
thistle2
|
99
|
Based on inspection of the module memberships it seems that
coral1 is the inverse of blue and/or
lightyellow

Interesting
Modules
coral1 - mean
testosterone




Gene
Ontology
BP enriched GO terms in coral1 module in TNA
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0001755
|
neural crest cell migration
|
16/1250
|
45/11978
|
0.0000062
|
0.0122582
|
0.0122582
|
ACVR1/ALX1/ARTN/EDN3/EFNB1/LOC113982696/LOC113984504/LOC113988059/RADIL/SEMA3B/SEMA4A/SEMA4B/SEMA4D/SEMA4G/SHH/SOX8
|
16
|
GO:0007411
|
axon guidance
|
41/1250
|
208/11978
|
0.0000432
|
0.0429695
|
0.0429695
|
ARTN/B3GNT2/BMP7/DOK5/DRAXIN/EFNA1/EFNB1/EPHA1/GAB2/GFRA3/GPC1/LGI1/LOC113982696/LOC113983904/LOC113984118/LOC113984504/LOC113988059/LOC113990338/LRTM2/MAPK7/NEO1/NEXN/NPTN/NRP2/NTN4/PALLD/RAP1GAP/SEMA3B/SEMA4A/SEMA4B/SEMA4D/SEMA4G/SHC3/SHH/SIAH1/SLIT2/SRC/TUBB3/UNC5A/VLDLR/VSTM2L
|
41
|
GO:0098962
|
regulation of postsynaptic neurotransmitter receptor activity
|
8/1250
|
18/11978
|
0.0002306
|
0.1476696
|
0.1476696
|
BEGAIN/CACNG4/DLGAP3/LOC113982730/LOC114000047/NPTX1/NPTX2/SRC
|
8
|
GO:0050919
|
negative chemotaxis
|
12/1250
|
38/11978
|
0.0003237
|
0.1476696
|
0.1476696
|
LOC113982696/LOC113984504/LOC113988059/LRTM2/NRP2/PDGFA/SEMA3B/SEMA4A/SEMA4B/SEMA4D/SEMA4G/SLIT2
|
12
|
GO:0035195
|
gene silencing by miRNA
|
6/1250
|
11/11978
|
0.0003710
|
0.1476696
|
0.1476696
|
CNOT6/CNOT8/EIF6/LIMD1/MOV10L1/WTIP
|
6
|
GO:0007267
|
cell-cell signaling
|
26/1250
|
130/11978
|
0.0008199
|
0.2719451
|
0.2719451
|
ADORA2A/ADRA1A/BMP2/CCN5/CX3CL1/DHH/ECE2/EDN3/EFNA1/EFNB1/ESR2/FGF18/FGFBP2/GJA5/GPNMB/GUCA1B/INHBA/LOC113988059/LOC113991921/LOC113992470/LOC113993120/PDGFA/POMC/SEMA3B/SHH/SSTR3
|
26
|
GO:0071470
|
cellular response to osmotic stress
|
6/1250
|
13/11978
|
0.0011461
|
0.3258145
|
0.3258145
|
LOC113991483/LOC113991484/LOC113991485/LOC113991486/LOC114001824/PKD2
|
6
|
GO:0009880
|
embryonic pattern specification
|
7/1250
|
18/11978
|
0.0014951
|
0.3305788
|
0.3305788
|
BMP7/EFNB1/RIPPLY2/SATB2/SHH/SMAD3/ZBTB16
|
7
|
GO:0055074
|
calcium ion homeostasis
|
7/1250
|
18/11978
|
0.0014951
|
0.3305788
|
0.3305788
|
CAMK2N1/CIB2/FAM20A/KL/LOC114004119/SNCA/TNFSF11
|
7
|
GO:0051764
|
actin crosslink formation
|
5/1250
|
10/11978
|
0.0019733
|
0.3926931
|
0.3926931
|
BAIAP2/DPYSL3/GAS2/GAS2L1/MARCKS
|
5
|

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

blue - mean
testosterone



Gene
Ontology
BP enriched GO terms in blue module in TNA
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0006120
|
mitochondrial electron transport, NADH to ubiquinone
|
17/1486
|
38/11978
|
0.0000008
|
0.0016443
|
0.0016443
|
NDUFA1/NDUFA11/NDUFA4/NDUFA4L2/NDUFA5/NDUFAF1/NDUFB11/NDUFB3/NDUFB4/NDUFB5/NDUFB7/NDUFS1/NDUFS4/NDUFS5/NDUFS6/NDUFS8/NDUFV3
|
17
|
GO:0032981
|
mitochondrial respiratory chain complex I assembly
|
18/1486
|
49/11978
|
0.0000113
|
0.0118183
|
0.0118183
|
ACAD9/ECSIT/LOC113987270/NDUFA1/NDUFA11/NDUFA5/NDUFAF1/NDUFB11/NDUFB3/NDUFB4/NDUFB5/NDUFB7/NDUFS1/NDUFS4/NDUFS5/NDUFS6/NDUFS8/NDUFV3
|
18
|
GO:0048013
|
ephrin receptor signaling pathway
|
25/1486
|
92/11978
|
0.0000975
|
0.0679597
|
0.0679597
|
ACTB/ACTR2/ACTR3/ARPC1A/ARPC1B/ARPC2/ARPC5/CDC42/EPHA4/EPHA8/EPHB2/EPHB3/GIT1/HCK/KALRN/LOC113993801/LOC113998953/NCK2/NCSTN/NGEF/RAC1/RHOA/SDC2/SS18/WASL
|
25
|
GO:0034314
|
Arp2/3 complex-mediated actin nucleation
|
8/1486
|
15/11978
|
0.0001580
|
0.0825658
|
0.0825658
|
ACTR2/ACTR3/ARPC1A/ARPC1B/ARPC2/ARPC5/ARPC5L/WHAMM
|
8
|
GO:1902600
|
proton transmembrane transport
|
21/1486
|
75/11978
|
0.0002186
|
0.0913576
|
0.0913576
|
ATP12A/ATP2C1/ATP5MF/ATP6AP1L/ATP6V0B/ATP6V0E1/ATP6V1E1/HVCN1/LOC113983953/LOC113984288/LOC113985114/LOC113985195/LOC113985992/LOC114000835/LOC114003365/NDUFA4/NDUFA4L2/SLC17A5/SLC25A27/SLC2A10/SLC9A1
|
21
|
GO:0035970
|
peptidyl-threonine dephosphorylation
|
9/1486
|
20/11978
|
0.0003162
|
0.1101596
|
0.1101596
|
DUSP4/DUSP5/DUSP6/DUSP7/LOC113997232/PPM1A/PPM1B/PPM1E/PPP2CA
|
9
|
GO:0043687
|
post-translational protein modification
|
55/1486
|
285/11978
|
0.0005068
|
0.1513247
|
0.1513247
|
ANKRD9/APP/ASB1/ASB16/ASB7/BMP4/BTBD6/C3/CCN1/COP1/COPS5/COPS7A/CP/DCAF13/DCAF17/DCUN1D1/ELOC/EVA1A/FBXL5/FBXL7/FBXO22/FBXO32/FBXO9/FUCA2/IGFBP7/KLHL13/KLHL20/KLHL42/LAMC1/LOC113984874/LOC113987294/LOC113992168/LOC113999119/LOC113999601/MIA3/NUB1/PROC/PSMA1/PSMA3/PSMA4/PSMA7/PSMD10/PSMD11/PSME4/RAB2A/RAB5A/RBBP7/SCG2/SDC2/SKP1/SKP2/SOCS3/SPSB4/UBE2F/UBE2M
|
55
|
GO:0043401
|
steroid hormone mediated signaling pathway
|
8/1486
|
18/11978
|
0.0007617
|
0.1665755
|
0.1665755
|
BMP4/GPER1/LEF1/NR2E1/NR4A3/PAQR7/PGRMC2/PPARD
|
8
|
GO:0008277
|
regulation of G protein-coupled receptor signaling pathway
|
14/1486
|
45/11978
|
0.0007642
|
0.1665755
|
0.1665755
|
ADCYAP1/GIT1/HOMER2/LOC114003843/PDCL/RGS11/RGS12/RGS14/RGS16/RGS2/RGS4/RGS5/ZDHHC3/ZDHHC7
|
14
|
GO:0002281
|
macrophage activation involved in immune response
|
6/1486
|
11/11978
|
0.0009564
|
0.1665755
|
0.1665755
|
IFI35/LOC113985745/LOC113986453/LOC113994309/LOC113998967/NMI
|
6
|
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

lightyellow - mean
testosterone



Gene
Ontology
BP enriched GO terms in lightyellow module in TNA
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0006695
|
cholesterol biosynthetic process
|
10/504
|
34/11978
|
0.0000008
|
0.0011542
|
0.0011542
|
FDFT1/HMGCR/HMGCS1/HSD17B7/INSIG1/INSIG2/LOC113987727/LOC114002832/MSMO1/SQLE
|
10
|
GO:0016126
|
sterol biosynthetic process
|
6/504
|
13/11978
|
0.0000072
|
0.0049447
|
0.0049447
|
CH25H/HMGCR/INSIG1/INSIG2/MSMO1/SQLE
|
6
|
GO:0045540
|
regulation of cholesterol biosynthetic process
|
8/504
|
33/11978
|
0.0000509
|
0.0233422
|
0.0233422
|
FDFT1/GPAM/HMGCR/HMGCS1/LOC113987727/LOC114002832/SQLE/SREBF2
|
8
|
GO:0071404
|
cellular response to low-density lipoprotein particle stimulus
|
5/504
|
16/11978
|
0.0003839
|
0.1321546
|
0.1321546
|
CD81/CD9/HMGCS1/PPARG/SREBF2
|
5
|
GO:0033189
|
response to vitamin A
|
4/504
|
10/11978
|
0.0005311
|
0.1462786
|
0.1462786
|
CAT/LOC113999589/LRAT/PPARG
|
4
|
GO:0006625
|
protein targeting to peroxisome
|
9/504
|
66/11978
|
0.0016812
|
0.3190921
|
0.3190921
|
ACOX1/AGPS/CAT/DAO/GSTK1/LOC113996048/NUDT19/PEX26/UBE2D3
|
9
|
GO:0019432
|
triglyceride biosynthetic process
|
4/504
|
14/11978
|
0.0022133
|
0.3190921
|
0.3190921
|
ACSL4/GK/GPAM/LPIN2
|
4
|
GO:2000009
|
negative regulation of protein localization to cell surface
|
4/504
|
14/11978
|
0.0022133
|
0.3190921
|
0.3190921
|
LEPROT/LEPROTL1/PICALM/TAX1BP3
|
4
|
GO:0006629
|
lipid metabolic process
|
11/504
|
96/11978
|
0.0022807
|
0.3190921
|
0.3190921
|
ACOX1/ACSL4/CH25H/CRK/CRKL/HMGCS1/LCAT/LPIN2/PPARG/SREBF2/TTPA
|
11
|
GO:0035666
|
TRIF-dependent toll-like receptor signaling pathway
|
5/504
|
23/11978
|
0.0023173
|
0.3190921
|
0.3190921
|
BIRC2/LOC113996048/TLR6/TRAF3/UBE2D3
|
5
|

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

Arcopallium
Intermedium (Ai)
## [1] 14598
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 71 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 0.0107 25.90 0.978 7300.0 7300.00 7370
## 2 2 0.1290 -8.30 0.891 4070.0 4060.00 4460
## 3 3 0.2070 -4.32 0.909 2460.0 2440.00 3040
## 4 4 0.2960 -3.16 0.936 1580.0 1550.00 2230
## 5 5 0.3840 -2.66 0.952 1070.0 1040.00 1710
## 6 6 0.4630 -2.39 0.961 745.0 716.00 1360
## 7 7 0.5500 -2.26 0.973 538.0 509.00 1110
## 8 8 0.6310 -2.19 0.983 399.0 370.00 929
## 9 9 0.6880 -2.14 0.986 303.0 275.00 788
## 10 10 0.7350 -2.13 0.987 234.0 208.00 677
## 11 11 0.7710 -2.12 0.987 184.0 160.00 588
## 12 12 0.7890 -2.14 0.980 147.0 124.00 516
## 13 14 0.8370 -2.11 0.984 97.2 77.90 406
## 14 16 0.8630 -2.10 0.983 67.1 50.60 327
## 15 18 0.8790 -2.09 0.983 47.9 34.00 270
## 16 20 0.8890 -2.09 0.982 35.2 23.40 227
## 17 22 0.8720 -2.11 0.964 26.5 16.60 193
## 18 24 0.8630 -2.13 0.957 20.4 11.90 166
## 19 26 0.8750 -2.11 0.962 15.9 8.74 145

The soft-power selected for AI is 18.

Genes per module in AI
moduleColors
|
Freq
|
antiquewhite2
|
1026
|
antiquewhite4
|
720
|
bisque4
|
182
|
blue2
|
68
|
brown2
|
68
|
brown4
|
104
|
coral1
|
94
|
coral2
|
90
|
coral3
|
53
|
darkgreen
|
1538
|
darkgrey
|
341
|
darkmagenta
|
1289
|
darkolivegreen
|
1686
|
darkolivegreen4
|
166
|
darkslateblue
|
482
|
darkviolet
|
65
|
grey
|
2
|
honeydew
|
57
|
honeydew1
|
309
|
indianred4
|
1184
|
lightcoral
|
274
|
lightcyan1
|
496
|
lightpink3
|
57
|
magenta
|
2702
|
magenta4
|
59
|
mediumpurple2
|
75
|
mediumpurple4
|
53
|
orange
|
629
|
orangered3
|
76
|
palevioletred3
|
98
|
plum
|
193
|
salmon2
|
63
|
skyblue2
|
86
|
thistle
|
64
|
thistle1
|
99
|
yellow3
|
50
|

Of our interesting modules, it appears that thistle1 is
negatively correlated with skyblue2
Interesting
Modules
thistle1 - mean
testosterone



Gene
Ontology
BP enriched GO terms in thistle1 module in AI
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0006783
|
heme biosynthetic process
|
3/84
|
23/11917
|
0.0005404
|
0.1945428
|
0.1939740
|
ALAS1/CPOX/SLC25A39
|
3
|
GO:0007005
|
mitochondrion organization
|
4/84
|
84/11917
|
0.0028888
|
0.3805802
|
0.3794674
|
ALAS1/DNAJA3/PYROXD2/SIRT3
|
4
|
GO:0045453
|
bone resorption
|
2/84
|
14/11917
|
0.0042287
|
0.3805802
|
0.3794674
|
ACP5/NCDN
|
2
|
GO:1900181
|
negative regulation of protein localization to nucleus
|
2/84
|
14/11917
|
0.0042287
|
0.3805802
|
0.3794674
|
LZTS2/TRIM29
|
2
|
GO:0001921
|
positive regulation of receptor recycling
|
2/84
|
16/11917
|
0.0055255
|
0.3924384
|
0.3912909
|
ANXA2/LOC113996134
|
2
|
GO:0072593
|
reactive oxygen species metabolic process
|
2/84
|
23/11917
|
0.0112839
|
0.3924384
|
0.3912909
|
LOC113988359/NDUFA13
|
2
|
GO:0007131
|
reciprocal meiotic recombination
|
2/84
|
26/11917
|
0.0142987
|
0.3924384
|
0.3912909
|
KLHDC3/RAD51D
|
2
|
GO:0016525
|
negative regulation of angiogenesis
|
3/84
|
74/11917
|
0.0152921
|
0.3924384
|
0.3912909
|
COL4A3/ISM1/LOC114002556
|
3
|
GO:2000134
|
negative regulation of G1/S transition of mitotic cell cycle
|
2/84
|
28/11917
|
0.0164802
|
0.3924384
|
0.3912909
|
CDKN2C/RBL1
|
2
|
GO:0009408
|
response to heat
|
2/84
|
30/11917
|
0.0187941
|
0.3924384
|
0.3912909
|
DNAJA3/RPS6KB1
|
2
|
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

skyblue2 - mean
testosterone



Gene
Ontology
BP enriched GO terms in skyblue2 module in AI
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0098696
|
regulation of neurotransmitter receptor localization to postsynaptic
specialization membrane
|
2/80
|
10/11917
|
0.0019340
|
0.3458354
|
0.3407388
|
ADAM10/PRKCZ
|
2
|
GO:0006509
|
membrane protein ectodomain proteolysis
|
2/80
|
19/11917
|
0.0070672
|
0.3458354
|
0.3407388
|
ADAM10/SPPL2A
|
2
|
GO:0001954
|
positive regulation of cell-matrix adhesion
|
2/80
|
20/11917
|
0.0078185
|
0.3458354
|
0.3407388
|
EPHA1/PRKCZ
|
2
|
GO:0097194
|
execution phase of apoptosis
|
2/80
|
20/11917
|
0.0078185
|
0.3458354
|
0.3407388
|
CFLAR/STK24
|
2
|
GO:0001817
|
regulation of cytokine production
|
2/80
|
21/11917
|
0.0086041
|
0.3458354
|
0.3407388
|
IGF2BP3/LRRC19
|
2
|
GO:0005977
|
glycogen metabolic process
|
2/80
|
23/11917
|
0.0102765
|
0.3458354
|
0.3407388
|
IL6ST/LOC113990070
|
2
|
GO:0010803
|
regulation of tumor necrosis factor-mediated signaling pathway
|
2/80
|
23/11917
|
0.0102765
|
0.3458354
|
0.3407388
|
LOC113989730/SPPL2A
|
2
|
GO:0032715
|
negative regulation of interleukin-6 production
|
2/80
|
26/11917
|
0.0130308
|
0.3458354
|
0.3407388
|
FOXJ1/SOCS5
|
2
|
GO:0021510
|
spinal cord development
|
2/80
|
28/11917
|
0.0150254
|
0.3458354
|
0.3407388
|
PTN/SUZ12
|
2
|
GO:0051781
|
positive regulation of cell division
|
2/80
|
31/11917
|
0.0182459
|
0.3458354
|
0.3407388
|
GAREM1/PTN
|
2
|
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

palevioletred3 -
mean testosterone


Not very convincing relationship

Gene
Ontology
BP enriched GO terms in palevioletred3 module in AI
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:2000772
|
regulation of cellular senescence
|
2/80
|
11/11917
|
0.0023535
|
0.3208474
|
0.3203173
|
RSL1D1/ZMPSTE24
|
2
|
GO:2001214
|
positive regulation of vasculogenesis
|
2/80
|
12/11917
|
0.0028120
|
0.3208474
|
0.3203173
|
ADM/CD34
|
2
|
GO:0042632
|
cholesterol homeostasis
|
3/80
|
52/11917
|
0.0050824
|
0.3208474
|
0.3203173
|
LOC113994745/NPC2/NUS1
|
3
|
GO:0031398
|
positive regulation of protein ubiquitination
|
3/80
|
66/11917
|
0.0098415
|
0.3208474
|
0.3203173
|
BCL10/TBC1D7/UBE2L3
|
3
|
GO:0010951
|
negative regulation of endopeptidase activity
|
3/80
|
67/11917
|
0.0102538
|
0.3208474
|
0.3203173
|
LOC113992168/PROS1/SPOCK3
|
3
|
GO:0001889
|
liver development
|
3/80
|
68/11917
|
0.0106759
|
0.3208474
|
0.3203173
|
FPGS/SRD5A1/ZMPSTE24
|
3
|
GO:0008360
|
regulation of cell shape
|
4/80
|
135/11917
|
0.0128347
|
0.3208474
|
0.3203173
|
CDC42SE2/RHOA/TBCCD1/ZMPSTE24
|
4
|
GO:0016239
|
positive regulation of macroautophagy
|
2/80
|
27/11917
|
0.0140126
|
0.3208474
|
0.3203173
|
SCOC/SESN2
|
2
|
GO:0000209
|
protein polyubiquitination
|
5/80
|
220/11917
|
0.0160870
|
0.3208474
|
0.3203173
|
FBXO11/LOC113996737/SKP1/UBE2L3/UBE2V1
|
5
|
GO:0030449
|
regulation of complement activation
|
2/80
|
30/11917
|
0.0171426
|
0.3208474
|
0.3203173
|
LOC113992168/PROS1
|
2
|
## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

lightcoral - mean
testosterone


Not a convincing relationship.
Lateral Septum
(Ls)
## [1] 14901
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 56 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 0.0556 39.00 0.907 7450.0 7450.00 7570
## 2 2 0.0483 -5.20 0.860 4130.0 4110.00 4480
## 3 3 0.1620 -4.09 0.900 2460.0 2450.00 3000
## 4 4 0.2850 -3.28 0.937 1560.0 1540.00 2160
## 5 5 0.4100 -2.85 0.962 1040.0 1010.00 1640
## 6 6 0.5170 -2.61 0.976 716.0 689.00 1290
## 7 7 0.6110 -2.48 0.985 510.0 483.00 1050
## 8 8 0.6900 -2.40 0.992 373.0 347.00 869
## 9 9 0.7470 -2.33 0.994 280.0 254.00 734
## 10 10 0.7940 -2.31 0.996 214.0 190.00 631
## 11 11 0.8250 -2.29 0.998 167.0 144.00 549
## 12 12 0.8450 -2.28 0.996 132.0 111.00 484
## 13 14 0.8770 -2.25 0.995 85.7 67.70 384
## 14 16 0.9000 -2.21 0.997 58.3 43.10 313
## 15 18 0.9140 -2.17 0.997 41.1 28.30 260
## 16 20 0.9240 -2.13 0.998 29.9 19.10 219
## 17 22 0.9300 -2.10 0.997 22.3 13.20 187
## 18 24 0.9340 -2.07 0.998 17.0 9.34 161
## 19 26 0.9330 -2.04 0.996 13.2 6.71 141

The soft-power selected for LS is 16.

Genes per module in LS
moduleColors
|
Freq
|
antiquewhite4
|
78
|
bisque4
|
98
|
black
|
2039
|
blue
|
1386
|
brown
|
1569
|
brown4
|
1884
|
coral1
|
80
|
coral2
|
398
|
darkgrey
|
256
|
darkmagenta
|
352
|
darkorange
|
818
|
darkred
|
284
|
floralwhite
|
466
|
green
|
1271
|
grey
|
2
|
lightcoral
|
50
|
lightgreen
|
223
|
lightsteelblue1
|
961
|
maroon
|
161
|
navajowhite2
|
357
|
orangered4
|
294
|
paleturquoise
|
309
|
palevioletred3
|
90
|
plum
|
62
|
skyblue3
|
200
|
yellow
|
1083
|
yellowgreen
|
128
|

There doesn’t appear to be any obviously negative correlations with
our modules of interest.
Interesting
Modules
darkmagenta -
strength


## Warning: Removed 3 rows containing missing values
## (`geom_point()`).


Gene
Ontology
BP enriched GO terms in darkmagenta module in LS
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0016032
|
viral process
|
21/295
|
406/12091
|
0.0009823
|
0.2529708
|
0.2436046
|
AAAS/ANKRD17/ATF7/BRD2/DCAF1/DNAJB12/E4F1/EP300/IL2RB/KAT2A/LOC113985512/LOC113989518/LOC113999689/LOC114003727/MPDZ/NUP214/SETD2/SPEN/SSRP1/TPR/UBR4
|
21
|
GO:0043967
|
histone H4 acetylation
|
5/295
|
33/12091
|
0.0011321
|
0.2529708
|
0.2436046
|
EP300/EP400/LOC113997056/LOC113998036/LOC113998501
|
5
|
GO:0046854
|
phosphatidylinositol phosphorylation
|
6/295
|
50/12091
|
0.0012919
|
0.2529708
|
0.2436046
|
LOC113983741/LOC113988212/LOC113992314/PI4K2A/PIK3R2/SOCS7
|
6
|
GO:0045652
|
regulation of megakaryocyte differentiation
|
5/295
|
35/12091
|
0.0014882
|
0.2529708
|
0.2436046
|
EP300/KMT2A/L3MBTL1/TNRC6B/TNRC6C
|
5
|
GO:0035194
|
post-transcriptional gene silencing by RNA
|
3/295
|
10/12091
|
0.0015190
|
0.2529708
|
0.2436046
|
HELZ/TNRC6B/TNRC6C
|
3
|
GO:0051726
|
regulation of cell cycle
|
8/295
|
96/12091
|
0.0023630
|
0.2529708
|
0.2436046
|
BOP1/CSNK2A2/EP300/HIPK2/L3MBTL1/NUP214/PRDM11/SON
|
8
|
GO:0010761
|
fibroblast migration
|
3/295
|
12/12091
|
0.0026857
|
0.2529708
|
0.2436046
|
ARID5B/LOC113988212/LOC113992314
|
3
|
GO:0006110
|
regulation of glycolytic process
|
5/295
|
40/12091
|
0.0027317
|
0.2529708
|
0.2436046
|
AAAS/EP300/LOC113999689/NUP214/TPR
|
5
|
GO:0007595
|
lactation
|
5/295
|
42/12091
|
0.0033944
|
0.2529708
|
0.2436046
|
CAD/LOC113997056/LOC113998036/MED1/NCOR2
|
5
|
GO:0019827
|
stem cell population maintenance
|
5/295
|
42/12091
|
0.0033944
|
0.2529708
|
0.2436046
|
EIF4ENIF1/LOC113993147/LOC113999502/MED30/RIF1
|
5
|

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

black -
strength


## Warning: Removed 3 rows containing missing values
## (`geom_point()`).


Gene
Ontology
BP enriched GO terms in black module in LS
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0007281
|
germ cell development
|
10/1654
|
19/12091
|
0.0000635
|
0.1183396
|
0.1180611
|
ACVR1/AKT1/ANGPT2/BMP4/CELF4/FBXW11/PAFAH1B1/RPS6KB1/SMAD5/TDRD1
|
10
|
GO:0006376
|
mRNA splice site selection
|
10/1654
|
20/12091
|
0.0001114
|
0.1183396
|
0.1180611
|
CELF2/CELF4/LOC113985802/LOC113985815/LOC114002198/LUC7L/LUC7L3/RBMX/SRSF1/SRSF6
|
10
|
GO:0005979
|
regulation of glycogen biosynthetic process
|
6/1654
|
10/12091
|
0.0008323
|
0.5895228
|
0.5881357
|
AKT1/INPP5K/PPP1CB/PPP1R3C/PPP1R3D/PPP1R3G
|
6
|
GO:0035338
|
long-chain fatty-acyl-CoA biosynthetic process
|
8/1654
|
18/12091
|
0.0014705
|
0.7811873
|
0.7793493
|
ACSL3/ACSL4/ELOVL2/ELOVL4/ELOVL5/ELOVL6/HSD17B12/TECR
|
8
|
GO:0032869
|
cellular response to insulin stimulus
|
21/1654
|
84/12091
|
0.0038217
|
0.8005247
|
0.7986411
|
AKT1/C2CD5/CAPN10/CPEB2/FER/HDAC9/INPP5K/INSIG2/LOC113985802/LOC113985815/LPIN2/PTEN/RAB12/RAB8B/RHOQ/RPS6KB1/SORBS1/STAR/SYAP1/TRARG1/YWHAG
|
21
|
GO:0006661
|
phosphatidylinositol biosynthetic process
|
19/1654
|
74/12091
|
0.0042222
|
0.8005247
|
0.7986411
|
CDIPT/CDS1/DGKE/FIG4/INPP4A/INPP5K/MTMR12/MTMR6/MTMR8/PIK3CA/PIK3R4/PIP4K2A/PIP4K2B/PITPNM3/PLEKHA3/PTEN/RAB4A/RAB5A/SACM1L
|
19
|
GO:0016024
|
CDP-diacylglycerol biosynthetic process
|
6/1654
|
13/12091
|
0.0047103
|
0.8005247
|
0.7986411
|
AGPAT3/AGPAT5/CDS1/LCLAT1/LOC113995899/TAMM41
|
6
|
GO:0032482
|
Rab protein signal transduction
|
6/1654
|
13/12091
|
0.0047103
|
0.8005247
|
0.7986411
|
RAB12/RAB21/RAB33B/RAB39A/RAB4A/RAB9A
|
6
|
GO:0045842
|
positive regulation of mitotic metaphase/anaphase transition
|
6/1654
|
13/12091
|
0.0047103
|
0.8005247
|
0.7986411
|
ANAPC11/ANAPC4/ESPL1/LOC113991003/NSMCE2/RB1
|
6
|
GO:0071470
|
cellular response to osmotic stress
|
6/1654
|
13/12091
|
0.0047103
|
0.8005247
|
0.7986411
|
DDX3X/LOC113991482/LOC113991485/LOC113991486/LRRC8D/ZFAND1
|
6
|

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

Bed Nucleus of the
Stria Terminalis (BSTm)
## [1] 15033
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 35 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
## 1 1 8.90e-06 0.819 0.932 7520.0 7520.00 7570
## 2 2 4.60e-01 -19.200 0.919 4140.0 4120.00 4520
## 3 3 4.54e-01 -6.940 0.905 2450.0 2420.00 3000
## 4 4 4.95e-01 -4.130 0.915 1540.0 1500.00 2140
## 5 5 5.62e-01 -3.070 0.935 1010.0 973.00 1590
## 6 6 6.37e-01 -2.750 0.952 689.0 652.00 1250
## 7 7 6.93e-01 -2.670 0.960 486.0 450.00 1010
## 8 8 7.32e-01 -2.640 0.961 351.0 318.00 841
## 9 9 7.65e-01 -2.600 0.965 260.0 230.00 713
## 10 10 7.99e-01 -2.540 0.977 197.0 169.00 613
## 11 11 8.14e-01 -2.520 0.977 152.0 126.00 535
## 12 12 8.28e-01 -2.510 0.977 119.0 95.20 471
## 13 14 8.51e-01 -2.460 0.980 75.6 56.50 375
## 14 16 8.78e-01 -2.390 0.987 50.4 34.80 306
## 15 18 8.91e-01 -2.350 0.989 34.9 22.30 255
## 16 20 8.89e-01 -2.330 0.984 24.9 14.60 216
## 17 22 9.04e-01 -2.280 0.991 18.3 9.91 185
## 18 24 9.15e-01 -2.220 0.994 13.7 6.84 160
## 19 26 9.15e-01 -2.190 0.992 10.5 4.82 140

The soft-power selected for BSTm is 22.

Genes per module in BSTm
moduleColors
|
Freq
|
antiquewhite4
|
712
|
bisque4
|
111
|
blue
|
1123
|
brown
|
1067
|
brown4
|
1377
|
coral1
|
69
|
coral2
|
490
|
darkgrey
|
720
|
darkmagenta
|
317
|
darkolivegreen
|
929
|
darkorange2
|
1057
|
darkred
|
492
|
green
|
471
|
grey
|
141
|
grey60
|
996
|
ivory
|
220
|
lightpink4
|
82
|
maroon
|
317
|
mediumpurple3
|
128
|
navajowhite2
|
87
|
paleturquoise
|
337
|
royalblue
|
222
|
saddlebrown
|
169
|
salmon4
|
2361
|
skyblue
|
940
|
thistle1
|
96
|

There appears to be a strong correlation between darkred and
salmon4, and inverse between darkmagenta and
paleturquoise
Interesting
Modules
darkred -
strength



Gene
Ontology
BP enriched GO terms in darkred module in BSTm
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0038007
|
netrin-activated signaling pathway
|
5/420
|
14/12181
|
0.0000736
|
0.0904506
|
0.0869563
|
DSCAM/LOC113983017/LOC113988456/LOC113993074/UNC5A
|
5
|
GO:1900034
|
regulation of cellular response to heat
|
10/420
|
70/12181
|
0.0001329
|
0.0904506
|
0.0869563
|
AAAS/ATR/CAMK2B/CREBBP/HSP90AB1/LOC113998422/MLST8/NUP54/NUP62CL/NUP85
|
10
|
GO:0090303
|
positive regulation of wound healing
|
6/420
|
26/12181
|
0.0002075
|
0.0941361
|
0.0904994
|
ACTG1/DMTN/LOC113983017/LOC113983228/LOC113993074/OCLN
|
6
|
GO:0043984
|
histone H4-K16 acetylation
|
5/420
|
21/12181
|
0.0006128
|
0.2085137
|
0.2004582
|
KANSL1/KANSL3/KAT7/KMT2A/MSL1
|
5
|
GO:0006909
|
phagocytosis
|
7/420
|
46/12181
|
0.0009214
|
0.2508137
|
0.2411241
|
LOC113988212/LOC113992314/LOC113993578/LRP1/RUBCN/SYT7/TUSC2
|
7
|
GO:0051899
|
membrane depolarization
|
5/420
|
26/12181
|
0.0017189
|
0.3342980
|
0.3213832
|
CACNA1E/CACNB3/CHRNB2/LOC113993166/LOC114000517
|
5
|
GO:0060964
|
regulation of gene silencing by miRNA
|
7/420
|
51/12181
|
0.0017194
|
0.3342980
|
0.3213832
|
AAAS/LOC113983589/LOC113992597/LOC114003727/NUP54/NUP62CL/NUP85
|
7
|
GO:0032786
|
positive regulation of DNA-templated transcription, elongation
|
4/420
|
17/12181
|
0.0023199
|
0.3351089
|
0.3221628
|
CCNT1/ELL/KAT7/LOC113988658
|
4
|
GO:0038096
|
Fc-gamma receptor signaling pathway involved in phagocytosis
|
8/420
|
69/12181
|
0.0024789
|
0.3351089
|
0.3221628
|
ACTG1/BAIAP2/ELMO2/HSP90AB1/LOC113983017/LOC113983228/LOC113993074/NCKIPSD
|
8
|
GO:0034622
|
cellular protein-containing complex assembly
|
4/420
|
18/12181
|
0.0029024
|
0.3351089
|
0.3221628
|
DNAJB12/LOC113995101/LOC113998422/TRAF2
|
4
|

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used


darkmagenta -
strength



Gene
Ontology
BP enriched GO terms in darkmagenta module in BSTm
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0055119
|
relaxation of cardiac muscle
|
3/256
|
11/12181
|
0.0013359
|
0.5366384
|
0.5205780
|
ATP1A1/GSN/RGS2
|
3
|
GO:0010887
|
negative regulation of cholesterol storage
|
3/256
|
12/12181
|
0.0017537
|
0.5366384
|
0.5205780
|
ABCA7/LOC113986559/PPARD
|
3
|
GO:0051014
|
actin filament severing
|
3/256
|
12/12181
|
0.0017537
|
0.5366384
|
0.5205780
|
CAPG/FMNL1/GSN
|
3
|
GO:2000377
|
regulation of reactive oxygen species metabolic process
|
3/256
|
14/12181
|
0.0028127
|
0.5634260
|
0.5465639
|
BCO2/MPV17/PINK1
|
3
|
GO:0002028
|
regulation of sodium ion transport
|
3/256
|
15/12181
|
0.0034618
|
0.5634260
|
0.5465639
|
ADRB2/ATP1A1/LOC113988625
|
3
|
GO:0006904
|
vesicle docking involved in exocytosis
|
4/256
|
34/12181
|
0.0053839
|
0.5634260
|
0.5465639
|
CPLX2/RAB15/RABEPK/VPS33B
|
4
|
GO:0043407
|
negative regulation of MAP kinase activity
|
4/256
|
34/12181
|
0.0053839
|
0.5634260
|
0.5465639
|
CDK5RAP3/LOC113991889/PIK3CB/RGS2
|
4
|
GO:0008203
|
cholesterol metabolic process
|
5/256
|
58/12181
|
0.0072969
|
0.5634260
|
0.5465639
|
ABCA7/LOC113986559/LOC113991750/LRP5/PPARD
|
5
|
GO:0030168
|
platelet activation
|
6/256
|
83/12181
|
0.0079613
|
0.5634260
|
0.5465639
|
ADAMTS13/DGKZ/LOC113984938/LOC113991889/LOC113997278/PIK3CB
|
6
|
GO:0051056
|
regulation of small GTPase mediated signal transduction
|
8/256
|
141/12181
|
0.0098161
|
0.5634260
|
0.5465639
|
ARHGAP17/ARHGAP19/ARHGEF16/INPP5B/LOC113997278/OPHN1/RHOU/SYDE2
|
8
|

## preparing gene to GO mapping data...
## preparing IC data...
## Warning in if (class(try(col2rgb(palette), silent = TRUE)) == "try-error")
## stop("color palette is not correct"): the condition has length > 1 and only the
## first element will be used

saddlebrown -
strength



Gene
Ontology
BP enriched GO terms in saddlebrown module in BSTm
ID
|
Description
|
GeneRatio
|
BgRatio
|
pvalue
|
p.adjust
|
qvalue
|
geneID
|
Count
|
GO:0015701
|
bicarbonate transport
|
5/128
|
33/12181
|
0.0000222
|
0.0113948
|
0.0110398
|
LOC113995938/LOC114003675/RHAG/SLC4A1/SLC4A4
|
5
|
GO:0042307
|
positive regulation of protein import into nucleus
|
5/128
|
37/12181
|
0.0000394
|
0.0113948
|
0.0110398
|
DMAP1/LOC113989827/LOC114001403/SMO/ZC3H12A
|
5
|
GO:2000379
|
positive regulation of reactive oxygen species metabolic process
|
4/128
|
20/12181
|
0.0000495
|
0.0113948
|
0.0110398
|
LOC114001403/NFE2L2/PDGFRB/ZC3H12A
|
4
|
GO:2000036
|
regulation of stem cell population maintenance
|
3/128
|
13/12181
|
0.0003001
|
0.0518481
|
0.0502329
|
SAV1/SMO/TAL1
|
3
|
GO:0050801
|
ion homeostasis
|
3/128
|
18/12181
|
0.0008240
|
0.1100942
|
0.1066645
|
SLC4A1/SLC4A4/WNK4
|
3
|
GO:0006635
|
fatty acid beta-oxidation
|
4/128
|
42/12181
|
0.0009560
|
0.1100942
|
0.1066645
|
DECR1/ECH1/LOC114001403/SESN2
|
4
|
GO:0001525
|
angiogenesis
|
8/128
|
203/12181
|
0.0013439
|
0.1326657
|
0.1285329
|
IL18/JUN/LOC113989827/LOC114001403/PLXND1/TAL1/WASF2/ZC3H12A
|
8
|
GO:0098869
|
cellular oxidant detoxification
|
4/128
|
55/12181
|
0.0026226
|
0.2265230
|
0.2194663
|
LOC113986834/LOC114003675/SELENOW/SESN2
|
4
|
GO:0043123
|
positive regulation of I-kappaB kinase/NF-kappaB signaling
|
6/128
|
146/12181
|
0.0043831
|
0.3224010
|
0.3123574
|
CARD11/LOC113989827/NEK6/TMEM101/TRIM32/WLS
|
6
|
GO:0043249
|
erythrocyte maturation
|
2/128
|
10/12181
|
0.0046657
|
0.3224010
|
0.3123574
|
LOC114001063/TAL1
|
2
|
Session Info
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
## [3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
## [5] LC_TIME=English_Australia.1252
##
## attached base packages:
## [1] grid parallel stats4 stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] enrichplot_1.8.1 AnnotationHub_2.20.2
## [3] BiocFileCache_1.12.0 dbplyr_2.1.1
## [5] network_1.16.1 RColorBrewer_1.1-2
## [7] MASS_7.3-51.6 dplyr_1.0.7
## [9] ggnetwork_0.5.8 igraph_1.2.6
## [11] ggfortify_0.4.11 GGally_2.1.0
## [13] effectsize_0.8.6 car_3.0-8
## [15] carData_3.0-4 viridis_0.6.1
## [17] viridisLite_0.4.0 rrvgo_1.0.2
## [19] UpSetR_1.4.0 limma_3.44.3
## [21] flashClust_1.01-2 org.Hs.eg.db_3.11.4
## [23] AnnotationDbi_1.50.0 clusterProfiler_3.16.1
## [25] fdrtool_1.2.15 ggpubr_0.4.0
## [27] gridExtra_2.3 wesanderson_0.3.6
## [29] VennDiagram_1.6.20 futile.logger_1.4.3
## [31] kableExtra_1.3.1 WGCNA_1.69
## [33] fastcluster_1.1.25 dynamicTreeCut_1.63-1
## [35] pheatmap_1.0.12 lubridate_1.8.0
## [37] DESeq2_1.28.1 SummarizedExperiment_1.18.1
## [39] DelayedArray_0.14.0 matrixStats_0.56.0
## [41] Biobase_2.48.0 GenomicRanges_1.40.0
## [43] GenomeInfoDb_1.24.0 IRanges_2.22.2
## [45] S4Vectors_0.26.1 BiocGenerics_0.34.0
## [47] stringr_1.4.0 PCAtools_2.0.0
## [49] cowplot_1.0.0 lattice_0.20-41
## [51] ggrepel_0.8.2 ggplot2_3.4.4
## [53] reshape2_1.4.4 plyr_1.8.6
##
## loaded via a namespace (and not attached):
## [1] rappdirs_0.3.1 ragg_1.2.1
## [3] tidyr_1.1.4 acepack_1.4.1
## [5] bit64_0.9-7 knitr_1.29
## [7] irlba_2.3.3 data.table_1.13.0
## [9] rpart_4.1-15 RCurl_1.98-1.2
## [11] doParallel_1.0.15 generics_0.0.2
## [13] snow_0.4-3 preprocessCore_1.50.0
## [15] lambda.r_1.2.4 RSQLite_2.2.0
## [17] europepmc_0.4 bit_4.0.4
## [19] webshot_0.5.2 xml2_1.3.2
## [21] httpuv_1.5.4 assertthat_0.2.1
## [23] xfun_0.29 hms_1.1.1
## [25] jquerylib_0.1.4 evaluate_0.14
## [27] promises_1.1.1 fansi_0.4.1
## [29] progress_1.2.2 readxl_1.3.1
## [31] DBI_1.1.0 geneplotter_1.66.0
## [33] htmlwidgets_1.5.3 reshape_0.8.8
## [35] purrr_0.3.4 ellipsis_0.3.2
## [37] backports_1.1.7 insight_0.19.6
## [39] annotate_1.66.0 gridBase_0.4-7
## [41] vctrs_0.6.5 abind_1.4-5
## [43] withr_2.5.2 ggforce_0.3.2
## [45] triebeard_0.3.0 treemap_2.4-2
## [47] checkmate_2.0.0 prettyunits_1.1.1
## [49] cluster_2.1.0 DOSE_3.14.0
## [51] crayon_1.4.2 genefilter_1.70.0
## [53] pkgconfig_2.0.3 slam_0.1-47
## [55] labeling_0.3 tweenr_1.0.1
## [57] nlme_3.1-148 wordcloud_2.6
## [59] nnet_7.3-14 rlang_1.1.2
## [61] lifecycle_1.0.4 downloader_0.4
## [63] rsvd_1.0.3 cellranger_1.1.0
## [65] polyclip_1.10-0 datawizard_0.9.0
## [67] Matrix_1.6-4 urltools_1.7.3
## [69] base64enc_0.1-3 ggridges_0.5.3
## [71] png_0.1-7 parameters_0.21.3
## [73] bitops_1.0-6 blob_1.2.1
## [75] DelayedMatrixStats_1.10.0 qvalue_2.20.0
## [77] jpeg_0.1-8.1 rstatix_0.7.0
## [79] gridGraphics_0.5-1 ggsignif_0.6.0
## [81] scales_1.3.0 memoise_1.1.0
## [83] magrittr_2.0.1 zlibbioc_1.34.0
## [85] compiler_4.0.2 scatterpie_0.1.5
## [87] dqrng_0.2.1 cli_3.6.1
## [89] XVector_0.28.0 htmlTable_2.0.1
## [91] formatR_1.8 Formula_1.2-3
## [93] mgcv_1.8-31 tidyselect_1.1.0
## [95] stringi_1.4.6 forcats_0.5.1
## [97] textshaping_0.3.6 highr_0.8
## [99] yaml_2.2.1 GOSemSim_2.14.2
## [101] BiocSingular_1.4.0 locfit_1.5-9.4
## [103] latticeExtra_0.6-29 fastmatch_1.1-0
## [105] tools_4.0.2 rio_0.5.16
## [107] rstudioapi_0.13 foreach_1.5.0
## [109] foreign_0.8-80 farver_2.0.3
## [111] ggraph_2.0.5 digest_0.6.25
## [113] rvcheck_0.1.8 BiocManager_1.30.10
## [115] shiny_1.5.0 Rcpp_1.0.7
## [117] broom_0.7.10 BiocVersion_3.11.1
## [119] later_1.1.0.1 httr_1.4.2
## [121] colorspace_1.4-1 rvest_1.0.2
## [123] XML_3.99-0.5 splines_4.0.2
## [125] graphlayouts_0.7.1 ggplotify_0.0.5
## [127] systemfonts_1.0.3 xtable_1.8-4
## [129] jsonlite_1.7.2 futile.options_1.0.1
## [131] tidygraph_1.2.0 NLP_0.2-1
## [133] R6_2.4.1 tm_0.7-8
## [135] Hmisc_4.4-0 pillar_1.6.4
## [137] htmltools_0.5.2 mime_0.9
## [139] glue_1.5.1 fastmap_1.1.0
## [141] BiocParallel_1.22.0 interactiveDisplayBase_1.26.3
## [143] codetools_0.2-16 fgsea_1.14.0
## [145] utf8_1.1.4 tibble_3.1.6
## [147] curl_4.3 zip_2.0.4
## [149] GO.db_3.11.4 openxlsx_4.1.5
## [151] survival_3.2-3 rmarkdown_2.11
## [153] munsell_0.5.0 DO.db_2.9
## [155] GenomeInfoDbData_1.2.3 iterators_1.0.12
## [157] impute_1.62.0 haven_2.3.1
## [159] gtable_0.3.0 bayestestR_0.13.1